Hyperbaric oxygen therapy involves breathing pure oxygen in a pressurized environment. Hyperbaric oxygen therapy is a well-established treatment for decompression sickness, potential risk of scuba diving. Other conditions treated with hyperbaric oxygen therapy include serious infections, bubbles of air in your blood vessels, and wounds that may not heal due to diabetes or radiation injury.
In a hyperbaric oxygen therapy chamber, the air pressure is increased two to three times higher than normal air pressure. Under these conditions, your lungs can gather much more oxygen than would be possible breathing pure oxygen at normal air pressure.
When your blood carries this extra oxygen throughout your body, this helps fight bacteria and stimulate the release of substances called growth factors and stem cells, which promote healing.
Your body’s tissues need an adequate supply of oxygen to function. When tissue is injured, it requires even more oxygen to survive. Hyperbaric oxygen therapy increases the amount of oxygen your blood can carry. With repeated scheduled treatments, the temporary extra high oxygen levels encourage normal tissue oxygen levels, even after the therapy is completed.
Hyperbaric oxygen therapy is used to treat several medical conditions. And medical institutions use it in different ways. Your doctor may suggest hyperbaric oxygen therapy if you have one of the following conditions:
Hyperbaric oxygen therapy is generally a safe procedure. Complications are rare. But this treatment does carry some risk.
Potential risks include:
You’ll be provided with a hospital-approved gown or scrubs to wear in place of regular clothing during the procedure.
For your safety, items such as lighters or battery-powered devices that generate heat are not allowed into the hyperbaric chamber. You may also need to remove hair and skin care products that are petroleum-based, as they are a potential fire hazard. Your health care team will provide instruction on preparing you to undergo hyperbaric oxygen therapy.
Hyperbaric oxygen therapy is typically performed as an outpatient procedure but can also be provided while hospitalized.
In general, there are two types of hyperbaric oxygen chambers:
Whether you’re in an individual or multi-person environment for hyperbaric oxygen therapy, the benefits are the same.
During therapy, the room's air pressure is about two to three times the normal air pressure. The increased air pressure will create a temporary feeling of fullness in your ears — similar to what you might feel in an airplane or at a high elevation. You can relieve that feeling by yawning or swallowing.
For most conditions, hyperbaric oxygen therapy lasts approximately two hours. Members of your health care team will monitor you and the therapy unit throughout your treatment.
Your therapy team assesses you, including looking in your ears and taking your blood pressure and pulse. If you have diabetes, your blood glucose is checked. Once the team decides you are ready, you can get dressed and leave.
You may feel somewhat tired or hungry following your treatment. This doesn’t limit normal activities.
To benefit from hyperbaric oxygen therapy, you’ll likely need more than one session. The number of sessions is dependent upon your medical condition. Some conditions, such as carbon monoxide poisoning, might be treated in three visits. Others, such as non-healing wounds, may require 40 treatments or more.
To effectively treat approved medical conditions, hyperbaric oxygen therapy is usually part of a comprehensive treatment plan provided with other therapies and drugs designed to fit your individual needs.
Written by the best, for the best.
Cryotherapy is a trend with a cult following in the recovery, wellness, and beauty industries. It can be used in combination with light therapy for better results. You may have heard people talking about it or seen celebrities or athletes posting themselves coming out of icy cold chambers on social media, but what is Cryotherapy? Why is everyone talking about it?
In its most basic form, Cryotherapy is simply the use of cold temperatures to heal the body. Using the cold to help our bodies recover from injury, inflammation, soreness, or relaxation has been used since the beginning. Putting ice on a wound or bruise, jumping in a cold lake, or taking an ice bath are basic cryotherapy forms. These methods cause stagnant blood to start moving again, promoting new blood flow, which brings healing. It is a fundamental, well-understood principle that has been widely accepted and used as a means of after the fact recovery but can be quite uncomfortable, inconvenient, and extremely inefficient compared to modern-day cryotherapy through the use of cryotherapy chambers.
Modern-day cryotherapy lends from past cold modalities to provide a much more comfortable, convenient, and effective recovery through cryotherapy chambers. Cryotherapy chambers provide a quick, 2–3 minute private session of whole-body exposure to shallow temperatures in a dry, contained, breathable air environment. Add in some music, light therapy, and awesome fog from the cold, and it becomes a fun experience that completely distracts from how cold you just got!
The goal of true whole body cryotherapy is to expose as much skin as possible to temperatures of -166F or below for a short period of time (2–3 minutes) to create a drop in the external skin temperature of 30–40 degrees. The best way to measure this is to use an infrared temperature device before and after the session on the upper arm's back, measuring the two temperature readings' delta.
Blood rushing to the core is our body’s natural way of protecting our core organs from extreme cold. When exposed to freezing temperatures, blood rushes from our extremities to our core, creating a systemic response throughout the body that produces many benefits. Cold promotes increased blood flow, bringing fresh, oxygenated blood full of white blood cells to the body's areas that need it. Cryotherapy amplifies these positive effects and adds many more incredible benefits by activating the vagus nerve and causing vasoconstriction and vasodilation. The vagus nerve is responsible for the regulation of internal organ functions [NCBI]. The vagus nerve is activated by cold on the back of the neck and touches every major organ in the body.
Whole Body Cryotherapy is not just for extreme athletes or those with present injuries, either. The best practice is for healthy, normal adults (minors with doctors) to regularly practice whole body cryotherapy 3–5 times per week. It is important to maintain a constant cryotherapy regimen and not just use it when you feel you need it or are injured. It is a continual recovery modality that helps the body stay healthy and even resist injuries and illness.
Biohacking is the practice of changing our chemistry and our physiology through science and self-experimentation to energize and enhance the body. It’s a broad definition, but that’s also because the concept is constantly evolving. It includes implementing lifestyle and dietary changes that improve the functioning of your body, as well as wearable technology to help you monitor and regulate physiological data. It can even run to extremes such as using implant technology and genetic engineering.
The possibilities are endless, but they are all rooted in the idea that we can change our bodies and our brains, and that by doing so we can ultimately become smarter, faster, and better as human beings.
Start biohacking your body by using wearables like the FitBit or the Apple Watch to track the way you operate. You could also start experimenting with the power of music in your everyday life and adopting a sustainable healthy diet. But if you’re ready for something new, and something different, consider one of these non-invasive methods from our biohacking guide:
Have you ever spent a lot of time indoors and begun to feel… off? Our bodies and brains need light to function at their best. Not only does the sun give us an important dose of vitamin D, but it helps us in a number of other physiological and emotional ways. Let’s look a little closer – specifically at the light wavelengths between 600 and 900 nanometers (nm). How does this range of light waves impact us and how can we use it to biohack the body?
Studies have shown that your body responds particularly well to red and near-infrared wavelengths, which range from 600 to 900 nm. This particular range of light waves is absorbed by the skin to a depth of about 8 to 10 millimeters, at which point your mitochondrial chromophores absorb the photons. This activates a number of the nervous system and metabolic processes.
In plainer terms, red light therapy has become an increasingly popular form of biohacking used to treat a number of conditions. It has been proven to relieve pain, reduce inflammation, and restore mood. And because it is a non-invasive and non-chemical treatment, it’s not as intimidating as other forms of biohacking.
With over 100 billion neurons that are constantly using electricity to talk to each other, your brain is like Grand Central Station. If everyone is chattering loudly at the same time, it can be tough to concentrate on what you need to get done. That’s where music biohacking comes in. Brain activity can be measured in a wave-like pattern and determines if you feel alert, sleepy, relaxed, or stressed. Things that can affect your brainwaves include the activity you are currently performing, how much restorative rest you’ve had, and what you’ve just eaten or drank.
One of the most reliable ways to change your brainwaves is through a consistent sound wave. Audio entrainment, a form of music biohacking, uses binaural beats and tones to synchronize with your brain waves and induce a meditative, relaxed state. You can access programs developed specifically for your own brain and the activities you want to accomplish at Brain.fm. If you’re not ready to go that far, you can still change your mood and mindset by queuing up your favorite playlist and listening while you work out, cook breakfast, or commute to work.
We talk a lot about cardiac health. After all, heart disease is the #1 killer of women in the United States. Everyone needs to be aware of cardiovascular diseases and how to protect themselves as best they can. As a culture, we also talk a lot about skin health – slathering on sunscreen as part of our daily routine and supplementing our diets with collagen-boosting foods. Weight loss, inflammation, memory, GI health, and how an unhealthy diet and lack of exercise can prematurely age you – these are all at the forefront of our minds. But how often do we think about the health of our bones?
A decrease in bone health creeps up on you and most people are unaware of how bone density changes over time. Roughly up until the age of 30, men and women actually build more bone than they lose, so we are constantly strengthening our bones and working on bone density. But when we hit our mid-30s, things change. And if you’ve passed that benchmark, you may have felt that shift.
After reaching their mid-30s, women lose about 2% of bone density every year, and that continues for a few years following menopause. This leaves women with a high likelihood of experiencing osteoporosis.
So what do you do? Consider trying OsteoStrong, a non-pharmaceutical way of improving bone density, strength, and balance as one of your biohacking techniques.
According to OsteoStrong’s website, research indicates that the stimulus required to activate the growth of healthy bone tissue is 4.2 multiples of body weight. However, this level of force would be exceptionally difficult to achieve on your own. That’s why OsteoStrong utilizes the Spectrum System, which is part of a new category of devices called the Robotic Musculoskeletal Development System (RDMS).
How we view life has a huge effect on our moods, how we treat others, and our general levels of fulfillment. When you have an abundance mindset, you’re consistently grateful for everything that comes your way and is always focused on the positive. Have a hard time adopting this type of perspective? Changing your mindset is really about nothing more than practice. You need to consistently refocus your brain to see the positive in every situation until it becomes second nature. These biohacking techniques and tools can help:
Exercising, eating right, and developing the right mindset are important steps to unlocking an extraordinary life. Biohacking helps you take this to the next level by incorporating supplements that improve focus, increase energy, and help your body benefit from the most bioavailable forms of nutrients available.
We often don’t get all the vitamins and minerals we need to keep us at peak performance. High-quality supplements in the form of pills, shakes, bars, or drinks can fill the nutritional gap and help boost performance, detoxify our systems, and achieve daily energy.
Tony has created a variety of health supplements, drinks, and bars that help you feel your best every day and make biohacking the body easy.
It’s common knowledge that as we age, our normal brain function gets disrupted. We tend to find it harder to recall information, memorize names, and respond with reason. The decline of our mental acuity causes these commonplace mental problems. Contrary to popular belief, aging is not the sole culprit for mental deterioration. Many factors, such as aging, lifestyle changes, and environmental stress, contribute to the decline of mental acuity.
As cognitive decline progresses, significant mental changes can result in disorders such as dementia, Alzheimer’s disease, and Parkinson’s disease. While these can be common aspects of life, they aren’t inevitable. Many medical experts believe that there are many lifestyle changes that you can take to prevent the degradation of Mental Acuity.
What is Mental Acuity?
Mental acuity is known as the sharpness of the mind. It involves our cognitive ability to concentrate, process, understand, reason, and memorize. On the other hand, intelligence means the extent to which our brains absorb and process a specific amount of information at a given amount of time. Mental acuity is a natural and essential aspect of our brain health and is not a measure of how “smart” we are.
Mental acuity allows us to perform daily activities effectively and efficiently. When our cognitive ability functions well, we’re more capable of doing things without damage or conflict.
What are the symptoms of a Deteriorating Mental Acuity?
Some signs of a deteriorating cognitive ability may be subtle. However, when left untreated could progress over time to more serious mental disorders. According to the National Institute on Aging, 8 out of 10 people who experience amnestic mild cognitive impairment develop into having Alzheimer’s disease.
Here are some early symptoms of a deteriorating mental acuity:
How to Improve Mental Acuity
Prevention is better than cure when it comes to developing chronic brain disorders. Here’s how you can take your brain health into your own hands by observing these lifestyle habits:
Getting enough nutrition is the key to ensure mental sharpness. Making sure you eat a well-balanced diet can help your body supply enough nutrients to your brain. Omega 3 Fatty Acids are essential nutrients that help build and restore brain cells. The brain also needs antioxidants to prevent inflammation.
Excessive intake of toxins such as alcohol and drug can depreciate your mental ability. Experts agree that poor gut health also results in a weakened immune system. As a result, it weakens your body’s inflammatory response. A poor inflammatory response causes mental disorders such as schizophrenia and dementia.
Irregular sleep patterns and sleep deprivation disrupt your body’s circadian rhythm that can lead to short-term mental problems as well as long-term chronic health problems.
Your body’s circadian rhythm is a natural body clock that controls your sleep-wake schedule as well as your digestive patterns. When you’re sleep-deprived, these rhythms get disturbed. As a result, you experience headaches, mood swings, and difficulty to focus and recall information. Aside from these unwanted effects, not having enough sleep also negatively impacts your overall brain health.
Exercise isn’t just for physical and aesthetic purposes. It also affects brain function in multiple ways. When you exercise, your body pumps more oxygen into your brain through an increased heart rate. Exercise allows your body to release hormones that are vital in nourishing your brain cells. It also promotes growth factors in your brain to assist in the growth of neuronal connections.
A study at the University of Georgia shows that a 20-minute exercise daily can improve memory retention and information processing. Many experts agree that a sedentary lifestyle may accelerate your way into cognitive decline.
Red Light therapy is a more modern approach to non-invasive and low-risk medical treatments. It is a form of photobiomodulation that allows light to change human cells' physiology that causes a wide range of benefits such as biological balance and cellular energy.
Kaiyan Medical is one of the pioneers of Red light therapy that uses red wavelengths to deliver benefits to the skin and near-infrared lights to penetrate deeper within the skin’s surface. This dual technology allows for better absorption and effectiveness of the benefits of Red light therapy.
As near-infrared wavelengths penetrate the brain’s cellular system, it promotes energy production by stimulating the mitochondria. It also prevents stress by keeping away oxidative stress. Thus, it delivers multiple benefits such as better blood flow, faster cell regeneration, and improved healing.
A study shows that red light therapy has significantly improved brain function when given to patients with cognitive dysfunction. All these benefits are vital in promoting and maintaining a healthy mental acuity. Red light therapy delivers all these cellular benefits to promote better sleep quality and a more balanced circadian clock.
As you maintain these lifestyle changes, you can experience a more improved brain function and better brain health. Now you can defy all odds and allow your brain to perform at its peak by having a healthy lifestyle and a balanced body.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4043367/
https://www.medicalnewstoday.com/articles/324044#oily-fish
https://pubmed.ncbi.nlm.nih.gov/12595152/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5403829/
https://www.healthline.com/health/mental-health/brain-exercises
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4870908/
When it comes to pain, we could hardly avert it! Especially the muscle pain. Given that the human body has over 600 muscles, it is tough to avoid muscle pain. Evidently, one out of three Americans is affected by muscle pain annually.
Not only this, Musculoskeletal pain affects around 116 million Americans, which results in poor productivity, missed work or school, fatigue, and lost interest in work.
But doesn’t we treatments for this chronic pain? Of course, we do have several options. Currently, therapies available consist of non-steroidal anti-inflammatory drugs, steroid injections, pain medications, and surgery. Each of these has its own specific risk profiles.
What we need now is an effective solution that is less time-consuming, low risk, safe and non-invasive, and yet cost-effective. All these features are available in treatment; we call Low Laser Light Therapy (LLLT). Light therapy has been in the medical field over the past forty years. Light therapy has been demonstrated to lessen inflammation and edema, promote healing in a range of musculoskeletal pathologies. LLLT is being accepted around the globe. This is an advanced, cost-effective, non-invasive therapy for pain that could elevate the quality of life while reducing your financial strains. The causes of muscular pain are numerous. Hence, LLLT helps people from all fields like sports, fitness, medical, and even old age.
In this process, light with a wavelength in the red to the near-infrared region of the spectrum (660nm–905nm) is employed on the skin surface. The reason for using these wavelengths is that they have the ability to penetrate the skin and soft/hard tissues. From various conducted clinical trials, this treatment is proven to have a good effect on pain, inflammation, and repairing of the tissues. The therapy goes from 30 to 120 seconds or more a week, depending upon the pain's severity.
Based on the tissue condition, the therapy can go on for weeks or months. LLLT has resulted in relief and reduction of inflammation, pain relief, and accelerated tissue regeneration.
But how does the light actually work?
Do you know that many acute orthopedic conditions such as strains, sprains, muscular back pain, frozen shoulder, neck and back pain, etc., are amenable to Low Laser Light Therapy (LLLT)?
The Infra-Red light relieves pain in a different section of the body and increases relaxation sensation while also comforting the muscles. LLLT has been shown to enhance the multiplication of cells like fibroblasts, keratinocytes, endothelial cells, and lymphocytes. Fibroblasts and keratinocytes are two major cell types that respond to the inflammatory phase in the repair/regeneration process.
LLLT can enhance neovascularization, promote angiogenesis, and increase collagen synthesis to succor in the healing of acute and chronic wounds. The LED light sessions have shown the ability to heal skin, nerves, tendons, cartilage, and bones. Low-intensity LLLT stimulates mitochondria and also enhances the mitochondrial membrane potential.
The peripheral nerve endings of nociceptors (also known as the pain receptors), consisting of the thinly myelinated and unmyelinated, slow-conducting C fibers, lie within the epidermis. This complex network converts harmful stimuli into action potentials. Moreover, these nerve endings lie on the surface or superficial in nature, making the LLLT wavelength penetration work easy.
Hence, with the rise of chronic pain in different countries, it is imperative to validate cost-effective and safe techniques for managing painful conditions, allowing people to live active and productive lives. Light therapy is constantly evolving in relieving muscular pain. It improves the muscle's endurance, reduces muscle soreness, joint pain, and inflammation.
It’s time to let go of the pain!!
Experience the difference with light therapy from Kaiyan Medical.
https://pubmed.ncbi.nlm.nih.gov/12605431/
https://pubmed.ncbi.nlm.nih.gov/27472858/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743666/
Saunas and red light therapy devices are clinically-proven treatments that complement each other wonderfully, even if they depend on distinct biological mechanisms to yield various natural health and aesthetic benefits.
In this article, we’ll focus on how things work for red light therapy and the distinctions of traditional saunas, and what you can actually gain by availing of either of them.
Saunas can make your body’s core temperature hotter by supplying sufficient heat throughout your body. It has been a part of traditional medicine for various centuries, as the old century folks realized the health benefits of sweating. Although there are multiple types of saunas, two of them are the most popular:
When you think of saunas, this is the first scenario that comes to mind: hot and steamy. This type of sauna requires more energy as it delivers heat to the atmosphere, warming the air inside the sauna, and distributes heat in the body. Traditional convection saunas can maintain air temperatures between 170–200°F and are an ideal type of sauna for general use. It is important to comprehend the different temperatures required for specific health concerns since being exposed to heat more than what has required triggers a warning for unsubstantiated claims.
The latest trend in saunas is the infrared saunas. Inside, instead of warming the air, this kind of sauna heats actual objects. Such objects include those with emitting surfaces, charcoal, and carbon fiber. Infrared saunas' effectivity is directly attributed to the temperature, humidity, and length of time your body is exposed to heat, even though many saunas claim to provide “full-spectrum” infrared wavelengths.
The farther the wavelengths are in the infrared spectrum, the more they are considered efficient and effective in heat production. This will be thoroughly discussed later, but the general gist is that heat supplementation is the primary purpose of saunas, convection, and infrared.
On the other hand, near-infrared wavelengths in near-infrared saunas generate very little heat. Most of the high-quality standard saunas use more effective heats from the far-infrared spectrum or IR-C wavelengths.
Inducing thermal stress on the body is the primary function of every sauna, but what does it really mean?
One of many biological responses from sauna usage is increased heart rate as well as perspiration. The essential body processes protein metabolism and is also affected by enough heat. Heat shock proteins are a special kind of protein that responds specifically to cellular stress from heat. Heat stress induction leads to natural health benefits like those we gain doing physical activities.
One experiment had participants sat in a sauna treatment for 30 minutes at 194°F for 3 weeks, totaling 13 work sessions. The results showed that the participants improved 32% in performance tests versus those who underwent sauna treatments.
Besides improving your cardiovascular functions, using saunas can help reap benefits such as detoxication, decreased depression, and lesser chronic fatigue.
What differentiates saunas from red light therapy devices is their mechanism of action. While saunas utilize heat for biological effects, red light therapy devices supply healthy light wavelengths directly to the skin and cells. Even when producing almost no heat, red light therapy devices help with cellular function improvement and support bodily balance. Simply put, red light therapy helps energize the body with light, while saunas heat your body.
Mitochondria, the powerhouse of our cells, is wonderfully affected by certain wavelengths of natural light. This helps in producing energy within the cells of our body, feeding photons to our cells from natural light via red light therapy.
We feel warm when exposed to sunlight and other heat sources such as fire and hot coals because most of the wavelengths, including ultraviolet (UV), are rapidly absorbed by the outer layers of the skin tissue as heat.
However, unknown to many, some wavelengths have the unique capability of boosting your cellular functions and energy. These are those few wavelengths that can penetrate human tissues more effectively, having photons power-up your “cellular batteries.”
One of the first few things you need to look for in saunas is the temperature it produces. You need to consider some other factors, including the type of wood, the heating unit (Is it conventional or infrared? Is it near far or full-spectrum?), finishes and stains, price, and more.
On the other hand, some of the factors you need to consider when choosing a red light therapy device are the device’s light energy output, light color or frequency range in terms of nanometers, warranty, body or treatment coverage area, the price, and the credibility of the company provider.
Saunas and red light therapy devices offer a wide range of natural health benefits, which surprisingly go well with each other. They both support balance and health to improve your fitness and function but do not overlap with each other’s effects because of energy supplementation in distinct forms and wavelengths. What a great combination of complementary natural therapies!
Here at Kaiyan Medical, we provide different types of red light therapy devices for various medical, wellness, and aesthetic uses. To see our list of products, click here.
Imagine that the movement of a single hair on your arm causes severe pain. For patients with neuropathic pain — a chronic illness affecting 7 to 8% of the European population, with no effective treatment — this can be a daily reality.
Scientists from EMBL Rome have now identified a special population of nerve cells in the skin that are responsible for sensitivity to gentle touch. These are also the cells that cause severe pain in patients with neuropathic pain. The research team, led by EMBL group leader Paul Heppenstall, developed a light-sensitive chemical that selectively binds to this nerve cell type. By first injecting the affected skin area with the chemical and then illuminating it with near-infrared light, the targeted nerve cells retract from the skin’s surface, leading to pain relief. Nature Communications publishes the results on 24 April 2018.
The Spicy Effect
By clipping off the nerve endings with light, the gentle touch that can cause severe pain in neuropathic patients is no longer felt. “It’s like eating a strong pepper, which burns the nerve endings in your mouth and desensitizes them for some time,” says Heppenstall. “The nice thing about our technique is that we can specifically target the small subgroup of neurons, causing neuropathic pain.”
There are many different nerve cells in your skin, which make you feel specific sensations like vibration, cold, heat, or normal pain. These cells are not affected by the light treatment at all. The skin is only desensitized to the gentlest touch, like a breeze, tickling, or an insect crawling across your skin.
Illumination vs. Drugs
Previous attempts to develop drugs to treat neuropathic pain have mostly focused on targeting single molecules. “We think, however, that there’s not one single molecule responsible. There are many,” Heppenstall explains. “You might be able to succeed in blocking one or a couple, but others would take over the same function eventually. With our new illumination method, we avoid this problem altogether.”
Touch and pain were assessed by measuring reflexes in mice affected by neuropathic pain in their limbs. Affected mice will normally quickly withdraw their paw when it is gently touched. After the light therapy, however, they exhibited normal reflexes upon gentle touch. The therapy's effect lasts for a few weeks, after which the nerve endings grow back, and gentle touch causes pain again.
The team also investigated human skin tissue. The tissue's overall makeup and the specifics of the neurons of interest appear to be similar, indicating that the method might be effective in managing neuropathic pain in humans. “In the end, we aim to solve the problem of pain in both humans and animals,” says Heppenstall. “Of course, a lot of work needs to be done before we can do a similar study in people with neuropathic pain. That’s why we’re now actively looking for partners and are open for new collaborations to develop this method further, with the hope of one day using it in the clinic.”