Keloids are an overgrowth of fibrotic tissue outside the original boundaries of an injury and occur secondary to defective wound healing. Keloid scars commonly grow beyond the wound boundaries, while hypertrophic scars are confined to the wound’s original area. Both types of scars arise as a result of impaired fibroblastic proliferation and collagen deposition after skin injury. Keloids often have a functional, aesthetic, or psychosocial impact on patients, as highlighted by quality-of-life studies. They can greatly affect the patient’s quality of life and emotional wellbeing by causing intense pain, itching, unappealing red appearance, and inexorable spread. Interestingly, keloids and hypertrophic scars are exclusively found in humans and do not occur in animals naturally. The lack of suitable animal models that recapitulate the key processes in keloidal/hypertrophic scarring has greatly hampered our understanding and treatment of these scars.
Treatments for keloids include surgical excision, intralesional or topical corticosteroids, other intralesional therapies: 5-fluorouracil (5-FU), bleomycin, and interferon, topical imiquimod, compression, cryotherapy, radiation, silicone sheeting, and laser or light-based therapies. Recurrence is common, even with combination therapy. Laser and other light-based technology have introduced new ways to manage keloids that may improve aesthetic and symptomatic outcomes and decrease keloid recurrence. Laser and light-based therapies for keloids can be grouped into three categories: ablative lasers, non-ablative lasers, and non-coherent light sources.
Non-ablative lasers target hemoglobin or melanin. 585 or 595-nm pulsed-dye lasers (PDL) are non-ablative, and the major chromophore is oxyhemoglobin. PDL also targets melanin; therefore, care must be taken to avoid pigmentary alterations. PDL is hypothesized to treat keloids by selective damage of blood vessels that supply the scar. The 980-nm diode laser targets hemoglobin and melanin. The 1064-nm neodymium-doped: yttrium, aluminum, and garnet laser and the 532-nm neodymium-doped: vanadate laser is hypothesized to primarily treat keloids by damaging deep dermal blood vessels.
Non-laser light sources are also used to treat keloids. These techniques include intense pulsed light therapy (IPL), light-emitting diode (LED) phototherapy, also known as low-level light therapy, and photodynamic therapy (PDT). These modalities utilize light energy that may cause keloid fibroblast functional modification. IPL emits non-coherent, broadband wavelength, pulsed light, and targets pigmentation and vasculature. LED phototherapy is hypothesized to photomodulate mitochondrial cytochrome C oxidase altering intracellular signaling. PDT requires the application of a photosensitizer, commonly 5-aminolevulinic acid or methyl aminolevulinic acid, that is preferentially absorbed by highly vascularized or metabolically active tissue and converted to protoporphyrin IX. Upon exposure to light, PpIX causes reactive oxygen species free radicals that have a cytotoxic effect. PDT may also cause alterations in extracellular matrix synthesis and degradation and modulate cytokine and growth factor expression.
The mechanisms by which topical PDT improves abnormal scars are largely unknown. However, they probably involve downstream responses to the ROS produced by the photodynamic reactions: the ROS induces membrane and mitochondrial damage, which activates signaling molecules such as TNF-α and interleukins 1 6 and cell death. The cell death may be via apoptosis, necrosis, and/or autophagy. These changes may alter growth factor and cytokine expression in the lesion, thereby modulating collagen production and extracellular matrix organization.
Notably, the shallowness of PDT suggests that it may be useful as an adjunct treatment of the wound area after keloid resection. In this setting, PDT may help to prevent postoperative keloid recurrence.
Written by the best, for the best.
Biohacking is the practice of changing our chemistry and our physiology through science and self-experimentation to energize and enhance the body. It’s a broad definition, but that’s also because the concept is constantly evolving. It includes implementing lifestyle and dietary changes that improve the functioning of your body, as well as wearable technology to help you monitor and regulate physiological data. It can even run to extremes such as using implant technology and genetic engineering.
The possibilities are endless, but they are all rooted in the idea that we can change our bodies and our brains, and that by doing so we can ultimately become smarter, faster, and better as human beings.
Start biohacking your body by using wearables like the FitBit or the Apple Watch to track the way you operate. You could also start experimenting with the power of music in your everyday life and adopting a sustainable healthy diet. But if you’re ready for something new, and something different, consider one of these non-invasive methods from our biohacking guide:
Have you ever spent a lot of time indoors and begun to feel… off? Our bodies and brains need light to function at their best. Not only does the sun give us an important dose of vitamin D, but it helps us in a number of other physiological and emotional ways. Let’s look a little closer – specifically at the light wavelengths between 600 and 900 nanometers (nm). How does this range of light waves impact us and how can we use it to biohack the body?
Studies have shown that your body responds particularly well to red and near-infrared wavelengths, which range from 600 to 900 nm. This particular range of light waves is absorbed by the skin to a depth of about 8 to 10 millimeters, at which point your mitochondrial chromophores absorb the photons. This activates a number of the nervous system and metabolic processes.
In plainer terms, red light therapy has become an increasingly popular form of biohacking used to treat a number of conditions. It has been proven to relieve pain, reduce inflammation, and restore mood. And because it is a non-invasive and non-chemical treatment, it’s not as intimidating as other forms of biohacking.
With over 100 billion neurons that are constantly using electricity to talk to each other, your brain is like Grand Central Station. If everyone is chattering loudly at the same time, it can be tough to concentrate on what you need to get done. That’s where music biohacking comes in. Brain activity can be measured in a wave-like pattern and determines if you feel alert, sleepy, relaxed, or stressed. Things that can affect your brainwaves include the activity you are currently performing, how much restorative rest you’ve had, and what you’ve just eaten or drank.
One of the most reliable ways to change your brainwaves is through a consistent sound wave. Audio entrainment, a form of music biohacking, uses binaural beats and tones to synchronize with your brain waves and induce a meditative, relaxed state. You can access programs developed specifically for your own brain and the activities you want to accomplish at Brain.fm. If you’re not ready to go that far, you can still change your mood and mindset by queuing up your favorite playlist and listening while you work out, cook breakfast, or commute to work.
We talk a lot about cardiac health. After all, heart disease is the #1 killer of women in the United States. Everyone needs to be aware of cardiovascular diseases and how to protect themselves as best they can. As a culture, we also talk a lot about skin health – slathering on sunscreen as part of our daily routine and supplementing our diets with collagen-boosting foods. Weight loss, inflammation, memory, GI health, and how an unhealthy diet and lack of exercise can prematurely age you – these are all at the forefront of our minds. But how often do we think about the health of our bones?
A decrease in bone health creeps up on you and most people are unaware of how bone density changes over time. Roughly up until the age of 30, men and women actually build more bone than they lose, so we are constantly strengthening our bones and working on bone density. But when we hit our mid-30s, things change. And if you’ve passed that benchmark, you may have felt that shift.
After reaching their mid-30s, women lose about 2% of bone density every year, and that continues for a few years following menopause. This leaves women with a high likelihood of experiencing osteoporosis.
So what do you do? Consider trying OsteoStrong, a non-pharmaceutical way of improving bone density, strength, and balance as one of your biohacking techniques.
According to OsteoStrong’s website, research indicates that the stimulus required to activate the growth of healthy bone tissue is 4.2 multiples of body weight. However, this level of force would be exceptionally difficult to achieve on your own. That’s why OsteoStrong utilizes the Spectrum System, which is part of a new category of devices called the Robotic Musculoskeletal Development System (RDMS).
How we view life has a huge effect on our moods, how we treat others, and our general levels of fulfillment. When you have an abundance mindset, you’re consistently grateful for everything that comes your way and is always focused on the positive. Have a hard time adopting this type of perspective? Changing your mindset is really about nothing more than practice. You need to consistently refocus your brain to see the positive in every situation until it becomes second nature. These biohacking techniques and tools can help:
Exercising, eating right, and developing the right mindset are important steps to unlocking an extraordinary life. Biohacking helps you take this to the next level by incorporating supplements that improve focus, increase energy, and help your body benefit from the most bioavailable forms of nutrients available.
We often don’t get all the vitamins and minerals we need to keep us at peak performance. High-quality supplements in the form of pills, shakes, bars, or drinks can fill the nutritional gap and help boost performance, detoxify our systems, and achieve daily energy.
Tony has created a variety of health supplements, drinks, and bars that help you feel your best every day and make biohacking the body easy.
You might have heard about hyperpigmentation from your dermatologist or a skincare company. But if you didn’t completely understand this skin condition — and you want to know how it develops, how to remove it, etc. — or if you have questions about this skin condition, this article can be of help.
Hyperpigmentation can be one or multiple skin patches or spots that appear much darker than your skin color. It is a cell mutation caused by changes in hormones, an injury like sunburn, acne, peeling from chemicals or any treatments, or inflammation. The darker areas of hyperpigmentation are excess deposits of melanin. And although it is harmless and common, having hyperpigmentation can make people more conscious about their looks. In fact, some people try to conceal it with cosmetic products, while some try to deal with it with professional help.
Age spots: As we age, brown, black or tan skin spots may develop on our hands, face, and/or head. These mostly affect light-skinned individuals and are caused by too much exposure from the sun.
Melasma: Usually caused by hormonal changes, melasma is common in women, especially those who are pregnant. It is composed of large patches of darkened skin that can appear on the face or stomach. Those with darker skin are more likely to have melasma.
Inflammation: This is caused by autoimmune reactions from skin conditions like acne and eczema or a skin injury. Post-inflammatory hyperpigmentation appears on the face and neck, and its appearance may vary depending on the skin tone. Inflammation can happen to anyone, regardless of skin color and origin.
There are different treatment options for hyperpigmentation, depending on your skin tone. Fair skin can be treated by most hyperpigmentation procedures, such as laser treatments and micro peeling. Medium skin usually reacts better with chemical peels and microdermabrasion therapy. Darker skin can benefit from using glycolic acid, kojic acid, microdermabrasion in a low setting, lower-strength chemical peels, and low-intensity laser treatments.
Some important things to watch out for when treating hyperpigmentation include:
Photobiomodulation is another name for red light therapy. It may help the body produce more energy and regenerate the skin by using natural light. This can also be used on hyperpigmentation and other skin injuries like acne, inflammation, burns, and scars. When used consistently, light therapy is highly effective in reducing and healing hyperpigmentation patches and helping them return to normal pigment levels.
Red light therapy is a powerful, advanced relief for skin inflammation. Skin cells heal and rejuvenate better when exposed to healthy wavelengths of light, which can help treat hyperpigmentation.
There’s a study that shows near-infrared light can help produce tyrosinase enzyme, which prevents melanin production. This helps patients with vitiligo stimulate melanocytes, the same compound in vitamin C that helps lighten hyperpigmentation. But the truth is, there is no clear clinical consensus among photomedicine researches about using near-infrared light for hyperpigmentation.
Red light wavelengths are considered to be safe as it does not stimulate the production of pigment. It creates healthy wavelengths of light to help the skin cells heal and rejuvenate naturally.
Results can be seen after several treatments done per week. The level of skin improvement depends on how consistently you use red light therapy. Also, the more consistent and the more careful you are in the process, the better the results you can see. Be sure not to pick or touch the treated areas to avoid infection or irritation.
Light therapy, especially when combined with other treatment options, can greatly help remove hyperpigmentation. To learn more benefits of red light therapy, you may reach out to us. We offer safe and easy-to-use light therapy devices that physicians use both for aesthetic and medical purposes. Meanwhile, if you have more questions about hyperpigmentation, please reach out to your dermatologist.
https://www.aocd.org/page/Hyperpigmentation#
https://www.healthline.com/health/hyperpigmentation
Rosacea is a common inflammatory skin condition affecting approximately 5% of the world population. Therapeutic approaches to rosacea are focused on symptom suppression employing anti-inflammatory agents. Photodynamic therapy, especially light-emitting diodes, has been introduced as a valid alternative to conventional therapy.
Because of rosacea's potential complexity, it has been classified into subtypes according to signs and symptoms that often occur together. Patients may have characteristics of more than one subtype at the same time. Although the cause of rosacea is unknown, several possibilities are currently being studied, including flushing, inflammatory pathways, and Demodex mites. Simultaneously, a growing range of therapies is available to address rosacea's signs and symptoms. While your doctor will tailor medical therapy to your individual case, treatment options may often be keyed to standard subtypes and level of severity.1
As with any medical therapy, outcomes of rosacea treatment may vary from case to case. Compliance with therapy — using your medication as your doctor prescribes — is an important key to success. Please consult a dermatologist or other physician to determine the appropriate therapy for your individual case.
Subtype 1 (erythematotelangiectatic) rosacea is characterized by flushing and persistent facial redness. Visible blood vessels may also be present, and facial discomfort is common.
Research into the physical processes involved in rosacea has recently led to new prescription therapy to relieve facial redness. It may also be important for you to identify and avoid lifestyle and environmental factors that trigger flushing or irritating your skin. The most common factors are covered in Rosacea Triggers, and a Rosacea Diary is available to help you identify and avoid those factors that affect your individual case.
The appearance of flushing, redness, and visible blood vessels may also be concealed with cosmetics, and facial discomfort may benefit from appropriate skincare, both discussed under Skin Care & Cosmetics.
Visible blood vessels and severe background redness may be reduced with lasers or intense pulsed light therapy. Several sessions are typically required for satisfactory results, and touch-up sessions may later be needed as the underlying disease process is still present.
In specific cases, extensive flushing may be moderated somewhat through the use of certain drugs.
Subtype 2 (papulopustular) rosacea is characterized by persistent facial redness and acne-like bumps and pimples and is often seen after or at the same time as subtype 1. Fortunately, however, several medications have been extensively studied and approved for this common form of rosacea and may also be used on a long-term basis to prevent symptoms recurrence.
In mild to moderate cases, doctors often prescribe oral and topical rosacea therapy to bring the condition under immediate control, followed by long-term use of topical therapy alone to maintain remission. A version of oral therapy with less risk of microbial resistance has also been developed specifically for rosacea and is safe for long-term use.
Higher doses of oral antibiotics may be prescribed, and other drugs may be used for patients who are unresponsive to conventional treatments.
Subtype 3 (phymatous) rosacea is characterized by skin thickening and enlargement, most frequently around the nose. This condition develops primarily in men. Although mild cases may be treated with medications, moderate to severe manifestations, typically require surgery.
A wide range of surgical options is available, including cryosurgery, radiofrequency ablation, electrosurgery tangential excision combined with scissor sculpturing, and skin grafting. A surgical laser may be used as a bloodless scalpel to remove excess tissue and recontour the nose, often followed by dermabrasion.
Subtype 4 (ocular) rosacea is characterized by any one of many eye symptoms, including a watery or bloodshot appearance, foreign body sensation, burning or stinging, dryness, itching, light sensitivity, and blurred vision. A history of having styles is a strong indication and has “dry eye” or blepharitis.
Treatment for mild to moderate ocular rosacea may include artificial tears, oral antibiotics, and the eyelashes' daily cleansing with baby shampoo on a wet washcloth. More severe cases should be examined by an eye specialist, who may prescribe ophthalmic treatments, as potential corneal complications may involve visual acuity loss.
Currently, there are two traditional treating methods, such as medications and physical treatment. Doctors can prescribe medications. Usually, the medications are antibiotics. The thing is, however, there are side effects from the antibiotics. Additionally, there is no proof that Rosacea is a bacterial condition. So the effectiveness of treatment could remain uncertain. Plus, going to see a doctor can be time-consuming & money consuming.
Physical treatment can be soup or gel to help better improve the skin. However, people have different skin types. Usually, it is super expensive to diagnose the skin condition in great detail; people have different skin types. The wrong usage of beauty products could lead to worsen skin problems or increase sensitivity.
Several therapeutic approaches are currently available for treating rosacea, and they are mainly aimed at controlling disease symptoms. The therapeutic plan has to be adapted to the rosacea subtype and tailored according to the patient's dominant manifestations. In general, the reduction of oral therapy in favor of topical or physical therapy is desirable to reduce side effects for patients and increase the treatment's safety.
The therapeutic approach has blue (480 nm ± 15 nm) and red (650 ± 15 nm) LED light-based therapy in patients affected by rosacea. Previous research reported the efficacy of red and blue light coupled with mild to moderate acne lesions. Blue light (400–470 nm), due to its lower penetration, is useful in such skin conditions related to the skin's epidermis layer; therefore, it can also interfere with human sebocyte proliferation. On the other hand, red light (630 nm) is reported to affect sebum production significantly. The benefits deriving from PDT using LEDs are not limited to its efficacy but are also related to its safety and tolerance by patients; therefore, its advantages can be extended to a broad range of dermatological conditions.
Two AM, Wu W, Gallo RL, Hata TR. Rosacea: part I. Introduction, categorization, histology, pathogenesis, and risk factors. J Am Acad Dermatol. 2015;72(5):749–58. quiz 759–60. PMID: 25890455
Plewig G, Kligman AM. History of Acne and Rosacea. In: ACNE and ROSACEA. Berlin: Springer; 2000.
Odom R, Dahl M, Dover J, Draelos Z, Drake L, Macsai M, Powell F, Thiboutot D, Webster GF, Wilkin J. Standard management options for rosacea, part 2: Options according to subtype. Cutis, 2009;84:97–104.
Kolontaja-Zauber, I., Ināra Ančupāne, Andra Dērveniece, Aija Žileviča, & Ilze Ķikuste. (, 2018). Impact of intense pulsed light therapy on the quality of life of rosacea patients. Proceedings of the Latvian Academy of ences Section B Natural Exact and Applied sciences, 72(1), 9–15.
Kim, B. Y., Moon, H. R., & Ryu, H. J. . (2018). Comparative efficacy of short-pulsed intense pulsed light and pulsed dye laser to treat rosacea. Journal of Cosmetic & Laser Therapy, 1–6.
Bo, Young, Kim, Hye-Rim, Moon, & Hwa, et al. (2018). Comparative efficacy of short-pulsed intense pulsed light and pulsed dye laser to treat rosacea. Journal of Cosmetic & Laser Therapy Official Publication of the European Society for Laser Dermatology.
Smith, J. P. K. . (1984). The eyes have it: young children’s discrimination of age in masked and unmasked facial photographs. Journal of Experimental Child Psychology.
We’ve all been in the search to help us achieve perfect skin. But is it just a dream, or can it really be achieved? It looks like having light shined on your face may be the most important part of your skin routine.
Red light’s anti-inflammatory and collagen-building effects on the skin have been documented for years, showing its healing abilities. However, light therapy is branching out, including other light spectrums such as green, blue, purple, and amber, for different healing abilities.
Ellen Marmur, a New York dermatologist, said, It has just enough variety that people stay excited to use it.” While many at-home devices are small and require multiple treatments to cover the entire face, masks help solve this issue.
“It makes people feel good, like they’re taking care of themselves,” Dr. Marmur said. “You can treat your skin while doing other things, so it’s easier to form the habit of doing it every day.”
LED therapy, known as photobiomodulation, can alter biological matter using varying wavelengths of light.
Jared Jagdeo, associate professor of dermatology and director of the Center for Phototherapy, SUNY Downstate Health Science University, studies LED therapy. “You can alter the skin through photo-damaging with lasers, or photobiomodulation, which is a much more gentle way of changing the way the skin functions,” he said.
When asked why red light works particularly well with skin, he said, “There’s a specific receptor in the mitochondria of the skin cells that red light specifically acts upon. And that’s why red light is an ideal wavelength for changing the way the skin functions.”
Red light can pass through the skin, deeply entering tissue and stimulating the cell’s mitochondria, which results in anti-inflammation and the skin’s rejuvenation. Collagen is also produced in the dermis, smoothing out wrinkles and plumping the skin.
While blue light doesn’t penetrate deeply into the skin, it kills acne-causing bacteria on the skin’s surface. Green light, on the other hand, focuses on melanocytes, reducing excess melanin production.
Eye safety is a valid concern, particularly because earlier this year Neutrogena recalled its LED mask over fears that it could cause eye injuries.
Brain S. Biesman, assistant clinical professor of ophthalmology, dermatology, and ENT at Vanderbilt University Medical Center in Nashville, states that most red light therapy devices aren’t powerful enough to cause eye damage. “Just normal blinking and eye movements should be sufficient to protect the eyes,” he said. “But never stare at a bright light source.”
More Thoughts
“As far as the F.D.A. is concerned, if I use CO2 laser resurfacing, it better work because of the amount of risk involved,” said Suzanne Kilmer, a clinical professor of dermatology at the UC Davis School of Medicine in Sacramento and director of the Laser and Skin Surgery Medical Group.
“Compare that to a home device,” Dr. Kilmer said. “If it doesn’t kill you, blind you or make things much worse, it’s probably going to get approved. So it’s actually more incumbent upon the people selling home devices to show efficacy. You have to trust the people who are selling them.”
“LED is real, but it’s probably not optimized yet,” Dr. Kilmer said.
With light therapy, various factors help determine the amount of light your skin needs: the light’s strength, the distance from the skin, the length of time the device is used on the skin, and the natural color of your skin.
“Some of these lights on the market are very weak, and they may not have enough energy output to actually have a biological effect,” Dr. Jagdeo said. “Imagine a glow stick. It produces a color. But you could shine it on your face all day, and it’s not going to change the way your skin works.”
Moreover, the medical community hasn’t determined the standardized dose for treating skin conditions such as hyperpigmentation and acne at home. Dr. Marmur chose her MMSphere dosing on Blu-U, an in-office blue light typically used as an alternative therapy for precancerous lesions.
“Consistent Sphere treatment for seven weeks will equal the energy given in the office with the Blu-U,” she said.
Another device, the Dr. Dennis Gross DRx SpectraLite FaceWare Pro, $435, releases red and blue light in a mask format, with each session lasting only three minutes. The mask’s LEDs are in contact with the skin, which may be a more effective treatment.
Dr. Jagdeo said, “This is a tremendously undertapped area in medicine. But LED light therapy is going to revolutionize the way home medical treatment is delivered for skin care over the next 10 to 15 years.”
If you’re considering developing your own LED facial mask, at Kayian Medical, our team of experts knows what they’re doing. We developed the Aduro mask, the top facial mask in the beauty industry with celebrities such as Julia Robert fans of the Aduro Mask. For more information, visit https://www.aduroled.com/.
Medical spas often recommend Blue light therapy for spider veins because they don’t have to be administered by trained doctors. And, yes, after several expensive sessions, you might start seeing a difference. The most effective method to treat spider veins is Sclerotherapy. We’ll also discuss the benefits of using Sclerotherapy is an effective alternative.
Before discussing how to treat spider veins with blue light therapy or sclerotherapy, we need to discuss what causes spider veins.
Spider Veins, scientifically called Telangiectasias, are a small network of blood vessels visible just under the skin's surface. They are called “spider veins” because they look like red spider webs.
Spider veins generally occur on the legs, feet, thighs, and face. They can also cause slight pain and discomfort.
While spider veins aren’t dangerous in and of themselves, they can indicate underlying vein disease.
Vein Disease, also known as Chronic Venous Insufficiency, is a disease in which the valves in the veins malfunction. The valves are usually supposed to act as one-way doors and facilitate blood flow to the heart. However, when they malfunction, blood flows back down and pools around the legs. This can put pressure on the veins and lead to spider veins or varicose veins.
While spider veins themselves aren’t dangerous, vein disease is hazardous and needs to be treated immediately. If left untreated, venous insufficiency can result in bleeding, skin infections, and ulcers.
In the worst-case scenario, vein disease can also lead to Deep Vein Thrombosis, a medical condition in which blood clots in the veins. If the clotted blood breaks, it can get carried to the lungs, leading to a potentially fatal condition called Pulmonary Embolism.
Light Therapy under the blue wavelength for spider veins is a method in which blue light is used to treat spider veins. This light is non-UV in nature and emits photons that generate heat. The heat can destroy the damaged blood vessel over time. The damaged vein shrinks and eventually dissolves.
The only time that blue light therapy for spider veins has an advantage over sclerotherapy is when it comes to the foot or face.
Both the face and the foot are dense with venous-arterial connections. When using Sclerotherapy, the Sclero has to be injected into the veins. Injecting it into the arteries can be dangerous. Most conservative physicians prefer not to use Sclerotherapy for spider veins in the face or foot.
As such, it’s better to go for blue light therapy for spider veins in the face or foot.
Sclerotherapy is the most effective and permanent method to treat spider veins. It is a minimally-invasive procedure in which a medicine called Sclerosant is injected into the damaged vein.
The Sclerosant inflicts some chemical damage to the veins, which leads to the vein walls sticking together and eventually closing up. The blood is then routed to healthier veins, and the damaged vein eventually gets reabsorbed.
There are multiple advantages of using Sclerotherapy to treat spider veins: