The body is naturally designed and made to be able to build newer bones when the need arises. Studies on animals and humans have shown that red and infrared light therapy greatly aids in healing breaks, fractures, and bone defects. In 2013, researchers in Sao Paulo, Brazil, studied the effects of red and near-infrared light on rat bones' bones' healing process. Upon a piece of bone being sliced from the upper leg in an “osteotomy” of 45 rats, the rats were split into three groups — Group 1 Received no light, the second group were administered red light (about 660–690 nm), and the third group was placed on exposure to near-infrared light (about 790- 830nm)
The study found “a significant increase in the degree of gray level (mineralization) in groups treated with the laser after 7 days” and “after 14 days, only the group treated with the laser therapy (red light and near-infrared light) in the infrared spectrum showed higher bone density.
Red light and near-infrared light have been shown to stimulate energy production in the bone cells, improve blood vessel formation, circulation, and blood flow to the affected area, regulate and decrease inflammation, increase bone growth factors, enhance the production of collagen and procollagen, which stimulates the growth of bone cells.
Because ATP production is interrupted in broken bones, and cells begin to die due to a lack of energy, the right kind of red light and near-infrared light therapy has shown increased bone formation and collagen deposition. It’s no wonder red light, and NIR is gaining so much momentum in sports teams among athletes. Many pro teams now use light therapy to speed recovery and get their players back in action after an injury, more every year. Red and near-infrared light wavelengths can penetrate deep into tissue and bone for all kinds of healing effects. Concentrated natural light stimulates the mitochondria in the cells, reducing oxidative stress and helping the body to produce more usable energy to power itself, regenerate, and heal.
Written by the best, for the best.
Athletes take exercise and training very seriously to maximize and improve performance. Whether you’re a competitive elite athlete or someone who’s just born to win every day, recovery can be one of the most neglected aspects of our daily lives.
Recovery: We hear it all the time from coaches and instructors, but it’s also one of the hardest things to do. The saying “Push yourself to your limits” happens also to have its own limits. Neglecting your training recovery aspect for optimal performance can take a toll on our body in the long run.
In this article, we show the importance of rest and recovery and some of the ways to speed up our body’s healing process, such as integrating red light therapy treatment.
After training or a strenuous workout, our body responds to strain, injury, or stress as a defense mechanism in inflammation. While it may sound damaging, inflammation is a natural response when our muscle tissue regenerates and grows from microtears. Going through the process is important to allow muscle growth and performance improvement. However, the inflammation needs recovery for your muscles to heal from too much strain or injury for it to maximize its healing effects.
Recovery is the process that your body undergoes to recuperate between training sessions or from the time of danger to its healing progression. Recovery works by giving your body time to regenerate muscle tissues.
Whether it’s a strain, acute soreness, or severe damage, your body needs time to heal. The time needed for the recovery process is also dependent on the severity of the damage/strain/injury. This means that the greater the stressor's intensity to your body, the longer the time you need to spend to allow your body to recover.
Many athletes have made recovery time a priority as it assists in the healing process of muscles post-inflammation. Giving your body time to recover can result in an improved performance.
During the recovery time, the muscle repairs regenerate and strengthens to tolerate a higher level of strain the next time. In other words, taking time to heal makes you stronger and less susceptible to future injuries. Having enough recovery time helps in optimal performance and longevity by helping the athletes convalesce both psychologically and physically to train and perform better.
By doing this, you can prevent future chronic problems, decreased sports performance, increased risk of injuries, or fatigue caused by inadequate healing.
1. Plan Your Rest Time
Planning your rest schedule and duration involves many factors such as the intensity of your activity, your age, and your skill level in sports/pieces of training. You may need less time to recover or more, depending on your personal needs. As a general rule, for medium to intense workouts/training, it is prescribed to maintain a healthy duration of 45 hours in between training.
Pro tip: Engage in Active Recovery
If you’re not suffering from an injury or severe damage, it’s important to incorporate active recovery periods during your recovery time so your body can maintain its active state.
Proper blood circulation is important in the recovery process. When the body gets injured, the body responds by dilating blood cells to speed up blood flow. Active recovery helps maintain good blood circulation and removes lactic acid out of inflamed muscles. Active recovery activities involve light physical movements such as stretching or yoga to allow proper blood flow and help your muscles recover and adapt better.
2. Get Enough Sleep
The Human Growth Hormone (HGH) is at its peak at night as we sleep. This hormone is responsible for tissue repair and recovery. This is why the key to a speedy recovery is to make you get a good REM sleep at the right time during your recovery period. Make sure to get a minimum of 7 hours of sleep at night to ensure that your body gets enough rest that it needs and to avoid any future complications. Lack of sleep can deter the process of muscle recovery.
Pro tip: Don’t be scared of having a few extra hours
Especially when you are suffering from intense strain/injury, it’s important to sneak in a few extra hours of sleep within your recovery period. In fact, a 2018 study suggests that sleep extension, a form of sleep intervention, can significantly contribute to the success of an athlete’s recovery. One way to ensure you get a significant amount of rest is to make sure your body has a healthy circadian rhythm. If you’re worried that you’re having trouble sleeping at night, there are many ways to improve your circadian clock- including red light therapy.
3. Refuel your Body
A healthy diet is also one of the great pillars of health. The nutrients you take in play a great role in your body’s function to cooperate with the recovery process. Minimize processed foods that may contain too much salt, sweets, and alcohol. These types of food may promote inflammation and dehydration, which can hinder the recovery process. Make sure to eat a balance recommended diet of whole foods.
Have an evaluation with a licensed dietitian or nutritionist to assess your nutritional needs. Assessment may vary depending on different factors such as weight, BMI, and activity level.
Pro tip: Focus on your Protein Intake
Protein is the key macronutrient that is responsible for muscle building and repair. It has amino acids that are metabolized by your body to ease muscle inflammation and build stronger muscles. Skip gulping on those protein supplements and focus instead on taking protein from whole foods such as lean meat, eggs, and cheese.
4. Listen to your Body
There can be all kinds of rules in recovery to maximize healing, but you can’t go wrong with paying attention to your body’s signals. Often, your body’s responses can be neglected. However, overlooking these signals can result in overtraining, which puts your body at risk of having more problems in the long run.
Despite your recovery time or period, if your body signals indicate pain and soreness, it’s important to give it time to recover better to address the issue. Aside from obvious physiological signs, pay attention to your heart rate variability, indicating your body’s adaptability to stress and your overall cardiovascular fitness.
5. Incorporate Red Light Therapy
Thanks to innovative medical devices, athletes and trainers have utilized more advanced healing modalities like red light therapy. Red Light Therapy is a popular, non-invasive, and effective light therapy treatment that can improve blood circulation essential for tissue and muscle recovery. It works by using LED to deliver wavelengths that deeply penetrates the skin and cells.
Integrating red light therapy in your recovery process can speed up muscle repair and minimize pain and swelling. The therapy accelerates the healing process by enhancing macrophage activity responsible for the white blood cell’s healing and anti-inflammatory response.
Pro tip: Try using Light Therapy Body Pad
Kaiyan Medical’s Light Therapy Body pad utilizes a high-end, medical-grade dual optical energy pad that uses 30 pieces of red light and 30 pieces of infrared light. The therapy's duality promotes deep treatment by treating injured skin surface while repairing deeper muscle, bones, tissue, and joint damage. The therapy pad is specially made with a broader light spectrum to increase absorption and penetration so you can maximize the treatment’s benefits. It’s a safe, non-invasive treatment that you can add to your recovery process so you can get back in the game stronger than ever.
Recovery and Rest are just as important as optimizing and improving performance. Allowing your body to maximize its natural healing processes can improve performance and overall better physical and mental health.
Ratamess NA, Alvar BA, Kibler WB, Kraemer WJ, Triplett NT. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 2009.
Garber CE, Blissmer B, Deschenes MR et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 2011.
Michael Kellmann, Maurizio Bertollo, et al. Recovery and Performance in Sport: Consensus Statement. Int J Sports Physiol Perform. 2018 Feb 1.
So-Ichiro Fukada, Takayuki Akimoto, Athanasia Sotiropoulos. Role of damage and management in muscle hypertrophy: Different muscle stem cells' behaviors in regeneration and hypertrophy. Biochim Biophys Acta Mol Cell Res. 2020 Sep.
Daniel J Plews, Paul B Laursen, et al. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Med. 2013 Sep.
Michael R. Irwin, Richard Olmstead, Judith E. Carroll. Sleep Disturbance, Sleep Duration, and Inflammation: A Systematic Review and Meta-Analysis of Cohort Studies and Experimental Sleep Deprivation. Biol Psychiatry. 2016 Jul 1; 80(1): 40–52.
https://www.medicalnewstoday.com/articles/247927
https://www.webmd.com/men/features/benefits-protein#1
Performance and recovery go hand in hand when training or doing physical activities, regardless if you’re an athlete or not. In fact, athletes and their trainers utilize light therapy to improve their performance and muscle health and optimize recovery. To expound further, this article will tackle optimizing performance in fitness, improving the recovery process, and breaking down the significance of light therapy.
Optimizing performance means paying attention to the body and how it functions, to live and train the body, and to find the best way to support its functions. Performance is not based on how hard or heavy are the weights you lift or the number of kilometers you’ve run; it is how effective your performance is and how you match it with your lifestyle (with the way you eat, drink and sleep).
On the other hand, recovery is about the effectiveness of the body’s healing process and the conscious effort of being in your best shape by enhancing your workout. It is also about utilizing the body’s tools and functions to effectively finish the jobs required daily.
Performance and recovery are correlated to one another. In exercising or training, if you want to improve fitness, workouts should be consistent. To get stronger, faster, and bigger, certain efforts must be made to increase performance levels. The recovery process is essential in health. It contributes to the workout; it is the downtime between training sessions or a break due to an injury or a period of healing from any exhaustion experienced.
Breaks like cool-downs, rest, and ample time of sleep give your body time to recuperate. They also allow healing for the muscles and tissues affected, strained, or damaged from workouts or training.
Performance is better when recovery time from soreness or inflammation is maximized. It also helps prevent burnout, fatigue, and possible injuries. If recovery is not made right, your physical performance may not reach its optimal state. Some athletes and trainers even make a recovery a priority over training itself. They believe that when an athlete recovers better than their competition, they will train harder in the long run.
Even if you are not an athlete, you should know how to let your body rest, heal, and recover properly from any form of injury or physical activity. Everyone has their own activity levels to maintain. It may not be sports-related, but everyone demands effort from their bodies on a day-to-day basis.
Regardless if you are an athlete, your body has limits. And if you push too hard, the body can break down and perform worse, especially if you didn’t observe any recovery time. Overtraining and pushing the body beyond its limits can affect performance in the short term or long term. Chances of injury are higher when you don’t allow yourself to recover, and it may also affect hormonal levels and the function of the immune system. The body needs time to process inflammation or any injury.
Inflammation happens when the body responses to danger or strain. It often takes place during a strenuous workout. When exercising, inflammation may indicate muscular damage. And when a muscle is “damaged,” it means that the tissue is growing and undergoes repair to get stronger.
Experiencing inflammation is a normal part of the growth and repair of muscle tissues. However, if you won’t set aside time for recovery, your inflammation may worsen over time and lead to greater health consequences.
Here are some ways that can help you improve your body’s recovery process:
The body speaks when it sends signals to the brain. Sometimes, we dismiss these signals because of training goals. This may eventually lead to fatigue and injury. When you experience pain or when your muscles are sore, it is important to give your body time to recuperate. You must also be aware of your heart rate, especially at rest, as it may be saying something about the state of your health.
Besides giving your body time to recuperate, deep sleep also allows the body to digest and process fat and recover from inflammation or damaged muscle tissues. It is harder for the body to recover from pain, strain, fatigue, and injury when you’re sleeping less than 7–8 hours per night. If you’re struggling with getting enough sleep, try doing meditation or speak with a doctor so he/she can advise you about developing a sleeping routine.
Getting the right amount of whole foods, good carbohydrates, protein, and good fat can also boost your performance and recovery. Lowering your intake of processed foods, alcohol, and sugary drinks can also help decrease inflammation.
The performance and recovery of our bodies depend entirely on our cells. When our cells are creating and using energy efficiently, our bodies recover faster. ATP (adenosine triphosphate) energy is released to give us power in what we do. The process of creating ATP energy works best when our body and cells are well-balanced, reaching a state called homeostasis.
High-quality devices are now available in the market to help athletes and trainers enhance the body’s natural healing and recovery process through light therapy.
Light therapy is a non-invasive treatment that uses LED lights to deliver red and near-infrared light to the skin and cells. It promotes efficient cellular ATP energy production and helps restore the balance of cells and tissues. Light therapy can be done before or after a workout. Some even do it both times — before and after a workout, depending on their goals.
Pre-conditioning with light therapy before working out can also help strengthen muscle performance. It can limit muscle damage and strain, lessening the chances of inflammation or soreness. When used after a workout, it promotes the speedy recovery of muscles and accelerates its adaptability to exercise. It also helps the body process acute inflammation after physical activity.
Muscles are composed of millions of cells that need to release ATP energy to fulfill the body's jobs, balancing exercise and stress. Light therapy helps improve cellular ATP energy, glycogen synthesis, oxidative stress reduction, and protection against muscle damage from exercising. Light therapy also helps improve blood circulation and oxygen availability, which allows better healing and recovery. It helps with the overall improvement of physical performance and faster recovery times. It also helps limit fatigue from exercising and strength training.
As discussed, light therapy promotes faster healing and recovery and soothes cells under stress when doing strenuous workouts, incurring injuries, and experiencing inflammation. When you set aside time for recovery, you give your body and cells what they need to function, thus improving your overall performance.
At Kaiyan Medical, we offer high-quality light therapy devices to help you achieve and maintain your fitness and performance goals. If you have questions about our products and the brands we offer, please don’t hesitate to contact us. We will respond to you as soon as possible.
According to a pioneering study by researchers from the Wellman Center for Photomedicine at Massachusetts General Hospital (MGH), light therapy is safe and has measurable effects on the brain.
Senior investigators Rajiv Gupta, MD, Ph.D., director of the Ultra-High Resolution Volume CT Lab at MGH and Benjamin Vakoc, Ph.D., at the Wellman Center led the study, which was supported by a grant from the Department of Defense (DOD) and published in JAMA Network Open September 14th.
This study is one of the first, if not the first, prospective, randomized, interventional clinical trials of near-infrared, low-level light therapy (LLLT) in patients who recently suffered a moderate brain injury. If further trials support these findings, light therapy could become the first widely-accepted treatment for this type of injury.
TBI is the leading cause of traumatic injury worldwide, and an estimated 69 million people experience such an injury every year. However, there are no treatments for this condition yet, largely because the underlying biological mechanisms are not well understood. It is so challenging to do studies with actual patients in the acute stage of trauma.
"The Gulf War put TBI in the headlines because body armor had been greatly improved by then. But there were still brain injuries caused by the shock waves from high powered explosives.”
Rajiv Gupta, MD, PhD, Director, Ultra-High Resolution Volume CT Lab
For various reasons, the number of TBIs has increased around the globe since then, but effective treatments are still sorely needed. For this study, a special helmet had to be designed specifically to deliver the therapy, an undertaking that required a mix of medical, engineering, and physics expertise.
This multidisciplinary team included Gupta, a neuroradiologist, Vakoc, an applied physicist, and others specializing in developing and translating optical instrumentation to the clinic and biologic laboratories. Both Gupta and Vakoc are also associate professors at Harvard Medical School.
“For this study, we designed a practical, near-infrared treatment based on Wellman Center research and working directly with DOD on the vexing problem of TBI, a condition faced by so many,” says Rox Anderson, MD, the center’s director.
Another challenge was optimizing the wavelength of the near-infrared LLLT.
“Nobody knows how much light you need to get the optimal effect,”
explains Lynn Drake, MD, one of the study co-authors and director of business development at the Wellman Center.
“We tried to optimize the wavelength, dosing, timing of delivery, and length of exposure.”
This was done through a series of pre-clinical experiments led by Anderson. These included multiple preclinical studies led by Michael Hamblin, Ph.D. Anderson and Hamblin are both co-authors of this paper.
Near-infrared LLLT has already been considered for multiple uses, but to date, few if any studies of this technology have been tested and none in patients with TBI.
It has been studied in stroke patients, and Wellman's basic laboratory research suggests it is neuroprotective through a mechanism mediated by specialized intracellular organs called mitochondria. It took several years of research at Wellman to understand the basic mechanism before the clinical trial.
The randomized clinical trial included 68 patients with moderate traumatic brain injury who were divided into two groups. One group received LLLT via the special helmet, which delivered the light. Patients in the control group wore the helmet for the same amount of time but did not receive the treatment.
Vakoc’s team at Wellman designed the helmet. During the study, the subjects’ brains were tested for neuron activity using quantitative magnetic resonance imaging (MRI) metrics, and the subjects also underwent neurocognitive function assessment.
MRI was performed in the acute (within 72 hours of the injury), early subacute (2–3 weeks), and late subacute (approximately three months) stages of recovery. During each visit and at six months, clinical assessments were performed using the Rivermead Post-Concussion Questionnaire, with each item assessed on a five-point scale.
Twenty-eight patients completed at least one LLLT session, and none reported any adverse reactions. Also, the researchers found that they could measure the effects of transcranial LLLT on the brain.
The MRI studies showed statistically significant differences in myelin's integrity surrounding the neurons of treated patients versus the control group. Both these findings support follow-up trials, especially since there are no other treatments for these patients.
The study also showed that light does impact the cells. While it is well established that cells have light receptors, “going into this trial, we had several unanswered questions such as whether the light would go through the scalp and skull, whether the dose was sufficient, and whether it would be enough to engage the neural substrates responsible for repair after TBI,” says Gupta.
It’s important to note, and he adds that for this initial study, the researchers focused on patients with moderate traumatic brain injury. That helped ensure their study could have statistically significant findings because patients in this category are more likely to demonstrate a measurable effect.
“It would be much more difficult to see such changes in patients with mild injuries, and it is quite likely that in patients with severe brain injuries, the effect of light therapy would be confounded by other comorbidities of severe trauma,”
says Gupta.
He adds that researchers are still very early in the development of this therapy. It is unknown if it could be applied to other types of brain injury, such as chronic traumatic encephalopathy (CTE), which has received a lot of public attention over the last few years.
CTE is a progressive degenerative disease associated with a history of repetitive brain trauma such as that experienced by certain athletes, most notably football players.
This study opens up many possibilities for the broader use of photomedicine. “Transcranial LED therapy is a promising area of research, with potential to help various brain disorders where therapies are limited,” says Margaret Naeser, Ph.D., a prominent researcher in photomedicine and research professor of Neurology at Boston University School of Medicine. She was not affiliated with this particular study.
Source:
Massachusetts General Hospital
Journal reference:
Longo, M, G. F., et al. (2020) Effect of Transcranial Low-Level Light Therapy vs. Sham Therapy Among Patients With Moderate Traumatic Brain Injury. doi.org/10.1001/jamanetworkopen.2020.17337.