According to the Centers for Disease Control and Prevention, approximately 800,000 stroke incidents occur every year. No two-stroke incidents are the same. Stroke patients suffer complications such as loss of motor skills or partial paralysis on one side of the body.
A person can feel excruciating muscle pain, contractions for long periods of time, or spasms during the recovery process. This muscle tightness is known as spasticity or hypertonia. Sometimes patients experience muscle weakness down one side of the body, known as hemiparesis. One of the best treatments for muscle spasticity and strengthening muscle function is physical therapy.
The recovery process is dependent on the continued movement of the affected muscles. For example, some patients are known to keep their affected shoulder tense due to pain from the arm remaining relaxed and hanging. This leads to more complications, pain, and tightness. Everyday tasks such as lifting a fork, sweeping a floor, or driving a car can feel impossible for some. While pain is felt in the shoulder, arm, or leg muscles — these muscles are mostly healthy. It is the brain circuits and nerves between the brain's connection to these body parts that are damaged and need to be strengthened. Often, stroke patients do not find relief from even the strongest pain medication. Regardless, stimulating the muscles and pained areas with physical therapy strengthens the brain's connection and generates the healing process.
The National Library of Medicine has shared a study conducted in 2016 on stroke patients and red light therapy. The study concluded that red light therapy “may contribute to increased recruitment of muscle fibers and, hence, to increase the onset time of the spastic muscle fatigue, reducing pain intensity in stroke patients with spasticity, as has been observed in healthy subjects and athletes.” Another study from The National Library of Medicine on the effect of Photobiomodulation by red light-emitting diodes (LEDs) on nerve regeneration concluded with positive results. It was found in 2010 that “red to near-infrared LEDs have been shown to promote mitochondrial oxidative metabolism. In this study, LED irradiation improved nerve regeneration and increased antioxidation levels in the chamber fluid. Therefore, we propose that antioxidation induced by LEDs may be conducive to nerve regeneration.” Red light therapy works well to stimulate mitochondrial functions in cells and nerves. It can stimulate recovery 4 to 10 times faster than your body’s natural healing process.
Physical therapy is necessary for stroke patients, and when paired with full-body red light therapy, there is the potential to assist efforts towards pain reduction significantly. Photobiomodulation or red light therapy stimulates cells and helps repair the myelin sheath covering nerve fibers to accelerate their healing process and can have a positive effect on repairing broken neural pathways in the brain disrupted by stroke incidents.
In Kaiyan Medical, we develop all types of light therapy devices. We believe in the holistic approach to balance your body.
Written by the best, for the best.
Holistic medicine is a whole-body approach to healthcare. It aims to improve health and wellness through the body, mind, and soul.
Holistic medicine is based on several core values:
LED stands for light-emitting diode. These lights have been in use since the 1960s, but people have only recently begun to use them as a skin treatment.
Before red light therapy entered the health and wellness industries, NASA developed LED lights to grow plants in space. But that was short-lived as LED’s benefits for wound healing and human tissue growth became visible.
LED lights, including blue and red, use varying wavelengths to penetrate the skin and absorb cells. The cell’s absorption triggers a biological process that helps the skin, muscles, and tissues rejuvenate and heal.
What makes LED treatment popular is its non-pharmaceutical and non-invasive treatment for healing acne, reversing sun damage, healing wounds, and other skin conditions.
Using LED treatment may be an amazing option for those who prefer a natural and non-pharmaceutical option to manage joint and muscle issues. By using a specific combination of visible and infrared wavelengths, you can heal the body from the inside out, healing conditions including arthritis without any side effects.
Whether you’re suffering from arthritis, carpal tunnel syndrome, or a different ailment, here are the top five pain relief devices to try.
5) Double Side FDA Cleared Red/Infrared Lights Therapy Glove
Those who have arthritis or repetitive strain injury should avoid gripping and straining the area. The double side therapy glove can surround their hand for complete coverage without injuring their wrists or fingers.
4)The Multifunction Pen LED
A portable solution, ideal for travel, the multifunction pen LED is around the size of a flashlight, using specific wavelengths for anti-inflammatory treatment in localized areas of application.
3) Handheld Device with LED Red Light
The LED red light therapy handheld device is built with an ergonomic handle, allowing the wrist to naturally rest and the fingers to grip comfortably. Its compact and efficient design is ideal for travel.
2) Light Therapy Infrared Light Panel for Whole Body
Are you looking for deep penetration? The light therapy infrared light panel has the largest amount of diodes, ideal for full body treatment. It’s ideal for reducing inflammation, increasing circulation, and stimulating cell growth.
1. FDA Cleared Red/Infrared Led Light Therapy Pad
A red/infrared light therapy pad is ideal for treating larger or numerous areas of the body, including the lower back. You can apply the therapy pad for 15 minutes, receiving the ideal amount of LED light for treatment.
When it comes to pain, we could hardly avert it! Especially the muscle pain. Given that the human body has over 600 muscles, it is tough to avoid muscle pain. Evidently, one out of three Americans is affected by muscle pain annually.
Not only this, Musculoskeletal pain affects around 116 million Americans, which results in poor productivity, missed work or school, fatigue, and lost interest in work.
But doesn’t we treatments for this chronic pain? Of course, we do have several options. Currently, therapies available consist of non-steroidal anti-inflammatory drugs, steroid injections, pain medications, and surgery. Each of these has its own specific risk profiles.
What we need now is an effective solution that is less time-consuming, low risk, safe and non-invasive, and yet cost-effective. All these features are available in treatment; we call Low Laser Light Therapy (LLLT). Light therapy has been in the medical field over the past forty years. Light therapy has been demonstrated to lessen inflammation and edema, promote healing in a range of musculoskeletal pathologies. LLLT is being accepted around the globe. This is an advanced, cost-effective, non-invasive therapy for pain that could elevate the quality of life while reducing your financial strains. The causes of muscular pain are numerous. Hence, LLLT helps people from all fields like sports, fitness, medical, and even old age.
In this process, light with a wavelength in the red to the near-infrared region of the spectrum (660nm–905nm) is employed on the skin surface. The reason for using these wavelengths is that they have the ability to penetrate the skin and soft/hard tissues. From various conducted clinical trials, this treatment is proven to have a good effect on pain, inflammation, and repairing of the tissues. The therapy goes from 30 to 120 seconds or more a week, depending upon the pain's severity.
Based on the tissue condition, the therapy can go on for weeks or months. LLLT has resulted in relief and reduction of inflammation, pain relief, and accelerated tissue regeneration.
But how does the light actually work?
Do you know that many acute orthopedic conditions such as strains, sprains, muscular back pain, frozen shoulder, neck and back pain, etc., are amenable to Low Laser Light Therapy (LLLT)?
The Infra-Red light relieves pain in a different section of the body and increases relaxation sensation while also comforting the muscles. LLLT has been shown to enhance the multiplication of cells like fibroblasts, keratinocytes, endothelial cells, and lymphocytes. Fibroblasts and keratinocytes are two major cell types that respond to the inflammatory phase in the repair/regeneration process.
LLLT can enhance neovascularization, promote angiogenesis, and increase collagen synthesis to succor in the healing of acute and chronic wounds. The LED light sessions have shown the ability to heal skin, nerves, tendons, cartilage, and bones. Low-intensity LLLT stimulates mitochondria and also enhances the mitochondrial membrane potential.
The peripheral nerve endings of nociceptors (also known as the pain receptors), consisting of the thinly myelinated and unmyelinated, slow-conducting C fibers, lie within the epidermis. This complex network converts harmful stimuli into action potentials. Moreover, these nerve endings lie on the surface or superficial in nature, making the LLLT wavelength penetration work easy.
Hence, with the rise of chronic pain in different countries, it is imperative to validate cost-effective and safe techniques for managing painful conditions, allowing people to live active and productive lives. Light therapy is constantly evolving in relieving muscular pain. It improves the muscle's endurance, reduces muscle soreness, joint pain, and inflammation.
It’s time to let go of the pain!!
Experience the difference with light therapy from Kaiyan Medical.
https://pubmed.ncbi.nlm.nih.gov/12605431/
https://pubmed.ncbi.nlm.nih.gov/27472858/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4743666/
Imagine that the movement of a single hair on your arm causes severe pain. For patients with neuropathic pain — a chronic illness affecting 7 to 8% of the European population, with no effective treatment — this can be a daily reality.
Scientists from EMBL Rome have now identified a special population of nerve cells in the skin that are responsible for sensitivity to gentle touch. These are also the cells that cause severe pain in patients with neuropathic pain. The research team, led by EMBL group leader Paul Heppenstall, developed a light-sensitive chemical that selectively binds to this nerve cell type. By first injecting the affected skin area with the chemical and then illuminating it with near-infrared light, the targeted nerve cells retract from the skin’s surface, leading to pain relief. Nature Communications publishes the results on 24 April 2018.
The Spicy Effect
By clipping off the nerve endings with light, the gentle touch that can cause severe pain in neuropathic patients is no longer felt. “It’s like eating a strong pepper, which burns the nerve endings in your mouth and desensitizes them for some time,” says Heppenstall. “The nice thing about our technique is that we can specifically target the small subgroup of neurons, causing neuropathic pain.”
There are many different nerve cells in your skin, which make you feel specific sensations like vibration, cold, heat, or normal pain. These cells are not affected by the light treatment at all. The skin is only desensitized to the gentlest touch, like a breeze, tickling, or an insect crawling across your skin.
Illumination vs. Drugs
Previous attempts to develop drugs to treat neuropathic pain have mostly focused on targeting single molecules. “We think, however, that there’s not one single molecule responsible. There are many,” Heppenstall explains. “You might be able to succeed in blocking one or a couple, but others would take over the same function eventually. With our new illumination method, we avoid this problem altogether.”
Touch and pain were assessed by measuring reflexes in mice affected by neuropathic pain in their limbs. Affected mice will normally quickly withdraw their paw when it is gently touched. After the light therapy, however, they exhibited normal reflexes upon gentle touch. The therapy's effect lasts for a few weeks, after which the nerve endings grow back, and gentle touch causes pain again.
The team also investigated human skin tissue. The tissue's overall makeup and the specifics of the neurons of interest appear to be similar, indicating that the method might be effective in managing neuropathic pain in humans. “In the end, we aim to solve the problem of pain in both humans and animals,” says Heppenstall. “Of course, a lot of work needs to be done before we can do a similar study in people with neuropathic pain. That’s why we’re now actively looking for partners and are open for new collaborations to develop this method further, with the hope of one day using it in the clinic.”
Light exposure may affect menstrual cycles and symptoms through the influence of melatonin secretion. In Kaiyan Medical we have been studying portable devices to relieve menstrual pain using low-level light stimulation. Menstrual pain often afflicts women and girls, but the intensity and impact on quality of life vary widely. A cross-sectioned analytical study found that 84 percent reported menstrual pain which often required medication and even resulted in missing work.
Many women rely on non-steroidal anti-inflammatory drugs, but of course, some prefer to avoid their undesirable side-effects. Other common menstrual pain management methods, according to the National Institutes of Health, include: applying heat with hot water bottles or heating pads, warm baths, or going to the sauna; special diets and dietary supplements; herbal products and herbal teas for medicinal use; homeopathic medicines; and procedures which target pain stimulus such as acupuncture, acupressure or TENS (transcutaneous electrical nerve stimulation). Light therapy devices add another alternative to targeting the pain source with low-level light stimulation applied at acupuncture points.
Light therapy devices improves blood flow and thereby reduces menstrual cramps with via photo-activated modulation of smooth muscle tissue. Usually, the light from the light therapy devices is emitted for a fixed amount of time (from 10 to 20 minutes). The light stimulation reaches the uterus and increases the secretion of nitrous oxide (NO). The NO spreads over the smooth muscle in the uterine cells and under continuous light stimulation produces a phosphate particle called cyclic guanosine monophosphate (cGMP). These particles continuously flow out and relax the smooth muscles so they receive oxygen and nutrition.
In the Archives of Gynecology and Obstetrics, subjects using the low-level light therapy showed statistically significant reduction in pain levels after a month and barely any pain after three months. This compares to a placebo group that showed slight pain reduction over time. The study concluded that
“skin adhesive low-level light therapy on acupuncture points might be an effective, simple, and safe non-pharmacological treatment for dysmenorrhoea.”
In this study, a total of 31 women with dysmenorrhoea were enrolled and randomly assigned to either the active or placebo low-level light therapy groups . Of 31 participants, 21 participants received real light therapy, while the remaining 10 participants received placebo one. All participants in the active low-level light therapy group reported either complete pain relief In the active low-level light therapy group, 16 women had successful results during their menstrual cycle, and 5 women had successful results at the second menstrual cycle.
The most interesting thing about this study, is that they conclude that the direct cause of dysmenorrhoea might not be changes in bioactive substances, such as hormone imbalance, a decrease in serotonin levels or excessive prostaglandin production, but the abnormal function of parts of smooth muscles in the uterus secondary to long-term deficient blood supply into smooth muscle tissue caused by disease or stress. This condition can be improved with light therapy.
Our light therapy products can help as well with back pain, skin, depression, sleep cycles, and pets.
Cakir M, Mungan I, Karakas T, Girisken I, Okten A (2007) Men- strual pattern and common menstrual disorders among university students in Turkey. Pediatr Int 49(6):938–942
Sharma A, Taneja DK, Sharma P, Saha R (2012) Socioeconomic correlates of reproductive morbidity among adolescent girls in Si- kkim. India Asia Pac J Public Health 24:136–150
Smith RP, Kaunitz AM, Barbieri RL, Barss VA (2011) Pathogene- sis, clinical manifestations, and diagnosis of primary dysmenorrhea in adult women. http://www.uptodate.com. Accessed 01 Dec 2011
Banikarim C, Middleman AB, GeVner M, Hoppin AG (2011) Pri- mary dysmenorrhea in adolescents. http://www.uptodate.com. Accessed 01 Dec 2011
Burton WN, Morrison A, Wertheimer AI (2003) Pharmaceuticals and worker productivity loss: a critical review of the literature. J Occup Environ Med 45(6):610–621
Bulletti C, DE Ziegler D, Setti PL, Cicinelli E, Polli V, Flamigni C (2004) The patterns of uterine contractility in normal menstruat- ing women: from physiology to pathology. Ann N Y Acad Sci 1034:64–83
Mueller A, Maltaris T, Siemer J, Binder H, HoVmann I, Beckmann MW, Dittrich R (2006) Uterine contractility in response to diVer- ent prostaglandins: results from extracorporeally perfused non- pregnant swine uteri. Hum Reprod 21(8):2000–2005
Berkow R (1992) The Merck manual of diagnosis and therapy, 16th edn. Merck Research Laboratories, New Jersey
Eby GA (2007) Zinc treatment prevents dysmenorrhea. Med Hypotheses 69(2):297–301
Marjoribanks J, Proctor M, Farquhar C, Derks RS (2010) Nonste- roidal anti-inXammatory drugs for dysmenorrhoea. Cochrane Database Syst Rev 20(1):CD001751 Review
Tramer MR, Moore RA, Reynolds DJ, McQuay HJ (2000) Quan- titative estimation of rare adverse events which follow a biological progression: a new model applied to chronic NSAID use. Pain 85(1–2):169–182
Smith KC (2010) Laser and LED photobiology. Laser Therapy 19(2):72–78
Tiphlova O, Karu T (1988) Stimulation of Escherichia coli divi- sion by low-intensity monochromatic visible light. Photochem Photobiol 48(4):467–471
Ball KA, Castello PR, Poyton RO (2011) Low intensity light stim- ulates nitrite-dependent nitric oxide synthesis but not oxygen con- sumption by cytochrome c oxidase: implications for phototherapy. J Photochem Photobiol B 102(3):182–191
Witt CM, Reinhold T, Brinkhaus B, Roll S, Jena S, Willich SN (2008) Acupuncture in patients with dysmenorrhea: a randomized study on clinical eVectiveness and cost-eVectiveness in usual care. Am J Obstet Gynecol 198(2):166.e1–166.e8
Schiøtz HA, Jettestad M, Al-Heeti D (2007) Treatment of dysm- enorrhoea with a new TENS device (OVA). J Obstet Gynaecol 27(7):726–728
Jones KR, V ojir CP , Hutt E, Fink R (2007) Determining mild, moderate, and severe pain equivalency across pain-intensity tools in nursing home residents. J Rehabil Res Dev 44(2):305–314
Editorial committee of the Korean Acupuncture and Moxibustion Society (2008) The acupuncture and moxibustion. Zipmundang, Seoul In Korean
Kelly AM (1998) Does the clinically signiWcant diVerence in visu- al analogue scale pain scores vary with gender, age, or cause of pain? Acad Emerg Med 5(11):1086–1090
Migraines are considered one of the most disabling illnesses in the world, most of whom are unable to function normally during a migraine. Migraines are much worse than the common headache - bringing on excruciating pain and other symptoms like dizziness, blurred vision, or vomiting.
Green light therapy lamps have been recommended by Harvard Medical School headache specialist Rami Burstein who found that light exacerbates migraines. Photophobia (extreme sensitivity to light) is associated with more than 80% of migraine attacks - but the green light in his research is different. He found that a narrow wavelength of green light is less aggravating than other colors because it sends a smaller, less disruptive signal to the brain via the visual cortex.
Stueids have been recording of dura- and light-sensitive thalamic neurons in rats to show that green activates cone-driven retinal pathways to a lesser extent than white, blue and red; that thalamic neurons are most responsive to blue and least responsive to green; and that cortical responses to green are significantly smaller than those generated by blue, amber and red lights.
"It became apparent that we should be able to use a narrow band of green light to treat photophobia," Burstein says.
Now patients could put their kids to bed, read a book, or enjoy a hearty meal with friends - instead of being isolated in darkness. Not only did green light fail to trigger pain, his research even found that it has a soothing effect.
Padma Gulur, who does not work with Burstein, is looking into the possibility that green light might relieve other forms of pain besides migraines. Already one year into a clinical trial - testing the effects of green, blue, or white light on people's post surgery or fibromyalgia pain experience - Gulur says the data looks promising that green light therapy could provide benefit to those in pain. Gulur, a Duke University anesthesiologist, says that finding a way to reduce pain without drugs is essential, given the addictive nature and side effects of opioids and other pain relievers. Not only did green light fail to trigger pain, his research even found that it had a soothing effect.
"We have very few options that are safe, easy to comply with, and have an impact on the pain experience. So it was a quest for non-pharmacological options that could help patients in pain that led to looking at the potential for light-based therapy," she says
Mohab Ibrahim, an anesthesiologist at the University of Arizona, found that when rats were exposed to green light, they felt less pain - or, at least, they were able to tolerate more discomfort in the form of heat or pressure. Wondering which mattered more - the light washing over the skin or contacting the eyes - Irbahim created tiny, rat-sized contact lenses. He found that when rats were wearing the contact lenses, which let only green light through, they similarly showed less discomfort.
Green light exposure has been found to significantly reduce migraine intensity and discomfort from fibromyalgia. In Kaiyan Medical we can create your green light therapy device to treat migraine and other conditions.