Photodynamic therapy (PDT) is a treatment that uses a drug, called a photosensitizer or photosensitizing agent, and a particular type of light. When photosensitizers are exposed to a specific wavelength of light, they produce a form of oxygen that kills nearby cells
Each photosensitizer is activated by light of a specific wavelength. This wavelength determines how far the light can travel into the body. Thus, doctors use specific photosensitizers and wavelengths of light to treat different areas of the body with PDT.
In the first step of PDT for cancer treatment, a photosensitizing agent is injected into the bloodstream. The agent is absorbed by cells worldwide but stays in cancer cells longer than it does in normal cells. Approximately 24 to 72 hours after injection, when most of the agent has left normal cells but remains in cancer cells, the tumor is exposed to light. The photosensitizer in the tumor absorbs the light and produces an active form of oxygen that destroys nearby cancer cells.
In addition to directly killing cancer cells, PDT appears to shrink or destroy tumors in two other ways. The photosensitizer can damage blood vessels in the tumor, thereby preventing cancer from receiving necessary nutrients. PDT also may activate the immune system to attack the tumor cells.
The light used for PDT can come from a laser or other sources. Laser light can be directed through fiber optic cables (thin fibers that transmit light) to deliver light to areas inside the body. For example, a fiber optic cable can be inserted through an endoscope (a thin, lighted tube used to look at tissues inside the body) into the lungs or esophagus to treat cancer in these organs. Other light sources include light-emitting diodes (LEDs), which may be used for surface tumors, such as skin cancer.
PDT is usually performed as an outpatient procedure. PDT may also be repeated and used with other therapies, such as surgery, radiation therapy, or chemotherapy.
Extracorporeal photopheresis (ECP) is a type of PDT in which a machine is used to collect the patient’s blood cells, treat them outside the body with a photosensitizing agent, expose them to light, and then return them to the patient. The U.S. Food and Drug Administration (FDA) has approved ECP to help lessen the severity of skin symptoms of cutaneous T-cell lymphoma that has not responded to other therapies. Studies are underway to determine if ECP may have some application for other blood cancers and help reduce rejection after transplants.
To date, the FDA has approved the photosensitizing agent called porfimer sodium, or Photofrin®, for use in PDT to treat or relieve the symptoms of esophageal cancer and non-small cell lung cancer. Porfimer sodium is approved to relieve esophageal cancer symptoms when cancer obstructs the esophagus or when cancer cannot be satisfactorily treated with laser therapy alone. Porfimer sodium is used to treat non-small cell lung cancer in patients for whom the usual treatments are not appropriate and relieve symptoms in patients with non-small cell lung cancer that obstruct the airways. In 2003, the FDA approved porfimer sodium to treat precancerous lesions in patients with Barrett esophagus, a condition that can lead to esophageal cancer.
The light needed to activate most photosensitizers cannot pass through more than about one-third of an inch of tissue. For this reason, PDT is usually used to treat tumors on or just under the skin or on the lining of internal organs or cavities. PDT is also less effective in treating large tumors because the light cannot pass far into these tumors. PDT is a local treatment and generally cannot treat cancer that has spread.
Porfimer sodium makes the skin and eyes sensitive to light for approximately 6 weeks after treatment. Thus, patients are advised to avoid direct sunlight and bright indoor light for at least 6 weeks.
Photosensitizers tend to build up in tumors, and the activating light is focused on the tumor. As a result, damage to healthy tissue is minimal. However, PDT can cause burns, swelling, pain, and scarring in nearby healthy tissue. Other side effects of PDT are related to the area that is treated. They can include coughing, trouble swallowing, stomach pain, painful breathing, or shortness of breath; these side effects are usually temporary.
Researchers continue to study ways to improve the effectiveness of PDT and expand it to other cancers. Clinical trials (research studies) are underway to evaluate PDT's use for cancers of the brain, skin, prostate, cervix, and peritoneal cavity (the space in the abdomen that contains the intestines, stomach, and liver). Other research is focused on the development of more powerful photosensitizers, more specifically target cancer cells, and are activated by light that can penetrate tissue and treat deep or large tumors. Researchers are also investigating ways to improve equipment and the activating light's delivery.
Written by the best, for the best.
As humans, we are made of energy and fueled by light. While nutrition and exercise play a role in our well-being and health, light plays a crucial role in us functioning optimally. New and groundbreaking research is unearthing a new understanding of how our cells function and the evidence points to the power of light.
Through technological advancements in science, it’s discovered that our bodies operate similar to a battery. Wavelengths of light give us power, while our overall health determines our ability to receive and maintain the energy from light. And this is where light therapy comes into the equation.
Science has proven that our bodies interact with specific wavelengths that benefit our bodies in various ways.
Red light therapy devices, such as light therapy masks, shine red and near-infrared light onto the skin, stimulating the production of adenosine triphosphate (ATP) within the mitochondria. By stimulating ATP, damaged cells heal, and new cells are produced faster than normal. But we’ll talk more about that in-depth a little later.
Red light therapy comprises both red light and infrared wavelengths, penetrating through the skin’s layers, right into the cells. Red light wavelengths boost collagen and elastin and improve cell communication. It penetrates superficially and helps aid various skin conditions.
Near-infrared wavelengths stimulate healing, increase mitochondrial function, and improve blood flow and tissue oxygenation. Near-infrared wavelengths penetrate deeply into the body.
At the core of your body’s healing capabilities are the mitochondria. The mitochondria play a vital role in your internal organs and tissue, including the liver, skin, heart, and muscles. It’s in charge of the body’s energy supply via ATP (adenosine triphosphate).
With both working together, they provide energy to our body and maintain the cell cycle and growth. This is why you’ll often hear the mitochondria referred to as the “powerhouse of the cell.”
Here's how the mitochondria is affected by red light:
Interestingly, our body weight is made of 70% water, with 99% of our bodies' molecules also made of water, making it a powerful component in red light therapy treatment.
Research by Prof Gerald Pollock of the University of Washington proved that water adjacent to a cell is structured water, also known as EZ water. This specific water forms a separation of charge, functioning in the body as positive and negative poles - similar to a battery.
While we’ve been talking about red light therapy, what does it actually mean? Typically, “red light therapy” refers to natural light treatments which deliver red and near-infrared wavelengths as natural sunlight using LEDs or cold lasers.
While you may think red light therapy includes all colors of light, it doesn’t. The term doesn’t include blue or white light, and it isn’t equivalent to full-spectrum light. Red light therapy doesn’t rely on heat, differentiating it from other light-based treatments such as infrared saunas and heat therapy.
Red light therapy is also known as RLT, photobiomodulation (PBM), phototherapy, LED therapy, LED light therapy, infrared therapy, low-level laser therapy, or low-level light therapy (LLLT).
As stated before, red light therapy works to heal the entire body and functions on multiple levels.
Red light therapy affects the body in multiple ways, including bodily systems:
Fascia
Fascia is the thin casing of connective tissue that surrounds virtually every organ, muscle, nerve fiber, blood vessel, and bone in place. While it performs as an internal structure for your body, the fascia also contains nerves, making it almost as sensitive as skin.
The fascia may look like a layer of tissue; however, it’s made up of interwoven layers of collagen and elastin fibers. The fascia is overlooked, yet over recent years, it has been the key to understanding how changes in one area of our body affect others. Red light therapy works to improve communication within the fascia network.
Gut-Brain Axis
The gut-brain axis connects the emotional and cognitive centers of the brain with peripheral intestinal functions. Recent research discovered the importance of gut microbiota concerning these interactions.
Red light therapy can positively influence mood and neuropsychological issues by the following:
Immune System
Red and near-infrared light penetrate through the skin into the cells, which results in low-dose metabolic stress that strengthens the cells’ anti-inflammatory and natural defense systems. In turn, the body becomes resilient to infections.
Safe and low exposure to red light therapy improves the body’s response to external viruses and bacteria. Red light therapy can influence the immune response in the following ways:
Circulatory System
Red light therapy is scientifically proven to increase the micro-circulation of blood and support the circulatory system as a whole by stimulating the development of new capillaries which carry oxygen throughout the body.
Proper oxygen supply and flow are essential for the proliferation of cells, protein synthesis, tissue restoration, inflammatory response, and angiogenesis. In addition, circulation is also responsible for waste elimination, specifically degenerated cells.
Nervous System
The nervous system includes the brain, spinal cord, neurons, and neural support cells, which is your body’s command center. It controls your movements, automatic responses, and other body systems such as digestion and breathing.
Red light therapy affects the nervous system in the following ways:
For all forms of nerve damage, red light therapy offers non-pharmaceutical treatment options.
Stem Cells
Red light therapy shows impressive results regarding stem cell growth, maximizing the potential of stem cell implantation for various medical needs. Therefore, red light therapy may show positive results after surgery to stimulate stem cells which repair tissues and organs.
In studies, red light therapy has proven to stimulate mesenchymal stem cells in bone marrow, enhancing their ability to reach the brain. This research shows the possibilities of using red light therapy to heal degenerative conditions, including Alzheimer’s, Parkinson’s disease, and dementia.
It’s clear red light therapy provides multilevel treatment to the body, becoming a popular natural and holistic option for both professionals and consumers, but where did it come from?
Light therapy technology isn’t new; it’s been around for decades as NASA experimented with red light therapy during the 1980s and 1990s. Over the past 10-20 years, red light therapy reached a breakthrough in LED lighting technology, allowing the production of safe and affordable clinical and at-home devices.
In 2016, Kaiyan Medical became the first leading manufacturer of red light therapy of affordable FDA-approved and MDASAP-approved light therapy devices.
We mentioned red light therapy being a holistic treatment option, but what does that mean. Holistic medicine is a full-body approach to healthcare. By focusing on the body, mind, and soul, the body receives the full support and care it needs to function optimally.
Principles of Holistic Medicine
Holistic medicine is based on the following principles:
The purpose of treatment is to identify the underlying cause of the disease, rather than treating only the symptoms.
While there are endless benefits the body receives from red light therapy, here are the six main benefits.
Photobiomodulation, in other words, red light therapy, has proven effective against carpal tunnel syndrome, mucositis, neck pain, menstrual cramps, temporomandibular joint pain, and neuropathic pain from amputation. It also significantly reduces the pain of hypersensitivity while improving sensorimotor function.
These improvements come after anti-inflammatory cells populate the injured area, providing long-lasting pain relief. In addition, it’s also been shown to provide effective relief by affecting the following:
Red light therapy has proven to be highly effective in rapidly treating wounds from burns, scars, bedsores, ulcers, surgery incisions, and diabetic neuropathy.
NASA strongly supports this claim as this technology was used in treating wounds. Red and near-infrared light proves effective in all four phases of the wound-healing process:
These processes are regulated by various factors connected via nitric oxide (NO) signaling release, adjusted by light energy.
An issue the body encounters when trying to heal a wound is low oxygen flow, and red light increases the flow of oxygen, speeding up the natural healing process. By reducing inflammation and increasing oxygenation of the wounded area, blood vessels can form, rapidly repairing the area, lessening pain and scarring.
By reducing pain, red light therapy eliminates the reliant on pharmaceutical painkillers during the healing process.
The human body receives energy on the cellular level, maintaining communication between organs and ensuring disease resistance.
A strong immune system works to protect the body from harmful bacteria and viruses at all times. With red light therapy, the body receives a boost of support as it releases nitric oxide and melatonin, two components involved in DNA repair and antimicrobial.
This process is called hormesis. Red and near-infrared wavelengths penetrate through the skin into the cells, causing mild metabolic stress, which stimulates cells to activate their anti-inflammatory and antioxidant response.
With the support of red light therapy, the body is better prepared to fight infections. Numerous studies have proven red light therapy to have the following effects on the immune system:
Inflammation in the body can be acute and topical (short-term, resulting from sprains, infections, and accidents) or chronic and general (long-term, caused by ongoing conditions).
Acute inflammation is a healthy bodily response; however, chronic and general inflammation can negatively impact long-term health.
As of today, the current treatment for inflammation is NSAID or steroid drugs, both having a detrimental effect on the healing process and long-term health. Red light therapy stimulates the body to activate its natural healing mechanism, reducing the health risks of long-term drug use.
Red light therapy decreases the number of inflammatory cells, increases fibroblast proliferation (cells that synthesize collagen and other matrix macromolecules), stimulates angiogenesis (creation of new blood vessels), and activates the body’s anti-inflammatory, antioxidant response.
The following conditions are connected with chronic and acute inflammation, all proving promising results with red light therapy treatment:
Red light therapy is extremely popular in competitive sports and performance. It offers natural and non-pharmaceutical treatment, which applies to many areas of the body.
Aside from the overwhelming benefits on overall health, red light therapy encourages muscles growth and repair by stimulating the production of ATP, which aids in faster recovery and better performance.
Red light therapy used before training prepares and strengthens the body while aiding muscle recovery after training.
Here are the scientifically documented effects of red light therapy:
Seasonal affective disorder (SAD) is a form of depressions, impacting 5% of Americans, specifically during the winter when there’s less natural sunlight. SAD is also known as seasonal depression or winter blues.
Many people treat SAD symptoms via bright white light treatment, mimicking the sun’s light daily. However, researchers recommend natural light treatment, like red light therapy, to help with light deficiency. Over recent years, physicians recommend red light therapy alongside psychotherapy and medication.
While many people are using red light therapy devices for at-home treatment, red light therapy systems are found in many clinical and professional settings:
Skincare Professionals: Red light therapy is a popular skincare treatment among Hollywood celebrities, including Kourtney Kardashian, Julia Roberts, and Emma Stone. Leading skincare professionals like dermatologists and aestheticians use red light therapy to help promote collagen production, reduce wrinkles, and treat skin conditions.
Health Practitioners: Health practitioners from all specialties are incorporating red light therapy into their practice. Dentists use it to reduce inflammation, physicians for mental health conditions, and oncologists for cancer side effects.
Natural Health Experts: Leading voices in the health and wellness industry such as Dr. Sarah Ballantyne, Ben Greenfield, and Dave Asprey strongly support the use of red light therapy. Paleo and Keto health experts like Robb Wolf, Mark Sisson, Luke Story, and Dr. Anthony Gustin also support red light therapy.
Sports Medicine Pros: The National Sports Association of Sports Medicine (NASM) adopted red light therapy to treat sports injuries. Top trainers and doctors, including Dr. Troy Van Biezen and Dr. Ara Suppiah, use red light therapy to heal their athletes.
Elite Pro Athletes: Professional athletes worldwide, including NFL stars like Patrick Peterson, UFC champion Anthony Pettis, and gold medal gymnast Sanne Weavers use red light therapy to enhance performance and quicken recovery.
Fitness & Training: World-renown fitness trainers, including Lacey Stone and Jorge Cruise, use red light therapy to enhance athletic performance and muscle recovery.
Supportive Cancer Care: The Multinational Association of Supportive Care in Cancer (MASCC) recommends the treatment of red light therapy for oral mucositis (OM), a common symptom of cancer treatment.
Klepeis N., Nelson W., Ott W., Robinson J., Tsang A., Switzer P., Behar J., Hern S., Engelmann W. “The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants”. Journal of Exposure Analysis and Environmental Epidemiology 2001.
Hamblin M. “Mechanisms and applications of the anti-inflammatory effects of photobiomodulation.” AIMS Biophys. 2017.
LED Lights Used in Plant Growth Experiments for Deep Space Missions. NASA.
Gál P, Stausholm MB, et al. Should open excisions and sutured incisions be treated differently? A review and meta-analysis of animal wound models following low-level laser therapy. Lasers in Medical Science. 2018 Aug.
John Foley, David B Vasily, et al. 830 nm light-emitting diode (led) phototherapy significantly reduced return-to-play in injured university athletes: a pilot study. Laser Therapy. 2016 Mar.
Kim HK, Choi JH. Effects of radiofrequency, electroacupuncture, and low-level laser therapy on the wrinkles and moisture content of the forehead, eyes, and cheek. Journal of Physical Therapy Science. 2017 February.
Wunsch A and Matuschka K. A Controlled Trial to Determine the Efficacy of Red and Near-Infrared Light Treatment in Patient Satisfaction, Reduction of Fine Lines, Wrinkles, Skin Roughness, and Intradermal Collagen Density Increase. Photomedicine and Laser Surgery. Feb 2014.
Barolet D, Roberge CJ, et al. Regulation of skin collagen metabolism in vitro using a pulsed 660 nm LED light source: clinical correlation with a single-blinded study. Journal of Investigative Dermatology. 2009 December.
Morita T., Tokura H. “ Effects of lights of different color temperature on the nocturnal changes in core temperature and melatonin in humans” Journal of Physiological Anthropology. 1996, Sept.
Naeser M., Zafonte R, Krengel MH, Martin PI, Frazier J, Hamblin MR, Knight JA, Meehan WP, Baker EH. “Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study” Journal of Neurotrauma. 2014, June.
Liu KH, Liu D, et al. “Comparative effectiveness of low-level laser therapy for adult androgenic alopecia: a system review and meta-analysis of randomized controlled trials.” Lasers in Medical Science. 2019 Aug.
Gupta AK, Mays RR, et al. “Efficacy of non-surgical treatments for androgenetic alopecia: a systematic review and network meta-analysis.” JEADV. 2018 Dec.
Afifi L, Maranda EL, et al. “Low-level laser therapy as a treatment for androgenetic alopecia.” Lasers in Surgery and Medicine. 2017 Jan.
Hofling DB, Chavantes MC, et al. Low-level laser in the treatment of patients with hypothyroidism induced by chronic autoimmune thyroiditis: a randomized, placebo-controlled clinical trial. Lasers in Surgery and Medicine. May 2013.
Hofling DB, Chavantes MC, et al. Assessment of the effects of low-level laser therapy on the thyroid vascularization of patients with autoimmune hypothyroidism by color Doppler ultrasound. ISRN Endocrinology. 2012.
Hofling DB, Chavantes MC, et al. Low-level laser therapy in chronic autoimmune thyroiditis: a pilot study. Lasers in Surgery and Medicine. 2010 Aug.
Vladimirovich Moskvin S., Ivanovich Apolikhin O. Effectiveness of low level laser therapy for treating male infertility. Biomedicine (Taipei). 2018 June.
Ban Frangez H., Frangez I., Verdenik I., Jansa V., Virant Klun I. Photobiomodulation with light-emitting diodes improves sperm motility in men with asthenozoospermia. Laser in Medical Science, 2015 Jan.
Salman Yazdi, R., Bakhshi, S., Jannat Alipoor, F. et al. Effect of 830-nm diode laser irradiation on human sperm motility. Lasers Med Sci. 2014.
Chow KW, Preece D, Burns MW. Effect of red light on optically trapped spermatozoa. Biomedical Optics Express. 2017 Aug.
Preece D., Chow KW, Gomez-Godinez V., Gustafson K., et al. Red light improves spermatozoa motility and does not induce oxidative DNA damage. Scientific Reports. 2017 Apr.
American Psychiatric Association
Cassano P, Petrie SR, et al. Transcranial Photobiomodulation for the Treatment of Major Depressive Disorder. The ELATED-2 Pilot Trial. Photomedicine and Laser Surgery. 2018 October.
Barrett DW, et al. Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. 2013 Jan.
Blanco NJ, Maddox WT, Gonzalez-Lima F. Improving executive function using transcranial infrared laser stimulation. Journal of Neuropsychology. 2017 Mar.
Paolillo FR, Borghi-Silva A, et al. New treatment of cellulite with infrared-LED illumination applied during high-intensity treadmill training. J Cosmet Laser Ther. 2011 Aug;13(4):166-71.
Caruso-Davis MK, Guillot TS, Podichetty VK, Mashtalir N, Dhurandhar NV, Dubuisson O, Yu Y. Efficacy of low-level laser therapy for body contouring and spot fat reduction. Obes Surg. 2011. Jun;21(6):722-9.
Jackson RF, Dedo DD, Roche GC, et al. Low-level laser therapy as a non-invasive approach for body contouring: a randomized, controlled study. Lasers in Surgery and Medicine. Dec 2009;41(10):99-809.
McRae E and Boris J. Independent evaluation of low-level laser therapy at 635 nm for non-invasive body contouring of the waist, hips, and thighs. Lasers in Surgery and Medicine. Jan 2013.
Avci P, Gupta A, et al. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Seminars in Cutaneous Medicine and Surgery. Mar 2013; 32(1): 41-52.
If there’s one thing most of us likely haven’t had enough of in 2020, it’s natural light. The pandemic has changed our lives in so many ways, particularly concerning the drastic increase in the amount of time spent indoors and home. Most of us are stationed at our computers all day, only to log off just in time for dinner. At that point, it’s already dark, and we’re likely ready to decompress and relax.
Throw a lockdown on top of this, and we’re lucky if we even get to see the sky that day.
Our current lifestyle, specifically in quarantine, makes natural daylight a rare sight, and this can be extremely detrimental to our mental and physical health — but why?
Without a sufficient amount of light, your circadian rhythm becomes out of sync, as does our hormone production levels. And if you’ve been experiencing poor sleep, lack of light is likely the reason why. A study from the Journal of Clinical Sleep Medicine found that employees who work near windows receive twice as much sunlight as those who don’t receive natural light — they also receive 46 more minutes of sleep on average.
So: darkness isn’t the determiner of sleep; rather, light is.
It’s clear how our daily routines have become more indoors-bound, yet there seems to be no way to reduce these light-limiting circumstances. The lack of sleep disrupted hormones, and constant uncertainty has a severe effect on our bodies, which we’re all experiencing during this time. So, how do we overcome these health concerns with limited options?
This is where red light therapy plays a crucial role in improving health. With the average American spending 90 percent of their time indoors, red light therapy allows you to receive light in your own environment. But just because we’re staying at home due to quarantine doesn’t mean we can’t supplement the natural light we need.
Red light therapy works by increasing energy production at a cellular level. The more energy our cells produce, the better our bodies feel as there’s sufficient blood flow. However, there’s more to it than just feeling good.
For people working in front of the computer all day, carpal tunnel syndrome, muscle fatigue, and arthritis are serious concerns. And since we’re working from home, our screen time has significantly increased. Red light therapy can also alleviate these issues by increasing circulation, repairing tissue, and relieving stiffness.
And while some may have received more natural light during quarantine in the summer, winter is right around the corner. During the winter months, Seasonal Affective Disorder (SAD) affects around 5% of people in general. However, with quarantine, these numbers are increasing. Thankfully, SAD symptoms can be significantly reduced, as light therapy mimics the sun’s light.
With COVID-19, it’s also incredibly difficult to manage mental and emotional health with the current circumstances. Before quarantine, if someone was stressed, they could reduce their symptoms by working out, going to yoga class, or enjoying nature with friends. But these activities have been either eliminated or significantly reduced. So, the reality is that we’re sitting at home all day, stressed, overworked, and fatigued.
Red light therapy is a game-changer for mitigating stress levels, as light cultivates calmness within the body. And since light therapy aids with cell production, it helps the body bounce back after experiencing stress or illness. In these times, red light therapy can aid with stress and help people recover from COVID-19 by reducing lung inflammation, pneumonia, and other acute respiratory disorders.
So although the quarantine presents many new challenges, we can be empowered to control our own health and wellness during these times. At Lunas, we’re passionate about helping people achieve their balance and intend to have our light panels in homes around the world, particularly during this challenging period. We hope to help everyone around the world find their light — literally!
As the most accessible element in the globe, hydrogen plays a huge role in our biological processes. However, you may not know that hydrogen usually brings an uninvited guest in your body, and we call it deuterium. Having high deuterium levels may change the chemical reactions in your cells and affect your bodily functions and metabolism, leading to unwanted health consequences.
Deuterium is also known as a “heavy hydrogen” and is one of the two stable hydrogen isotopes. We commonly have it in our bodies — in fact, it helps children grow. However, adults may have too much deuterium because of dietary and environmental factors. As mentioned above, this may lead to chemical reactions at a cellular level and lead to health risks.
Hydrogen is necessary for our day-to-day bodily functions. Our biological processes require it, and we usually get it from what we eat or drink. Upon intake, hydrogen goes to the mitochondria, also known as the powerhouse of the cells.
Our mitochondria can be compared to thousands of engines that continually run to produce the ATP energy we need to survive daily. The majority of people eat only three to five pounds of food each day, but we usually make more than 170 pounds of ATP energy at the same time.
On the other hand, deuterium is like hydrogen’s “evil” sibling. And we repeat, excess deuterium is harmful to our bodies. Because it is twice as heavy and large as hydrogen, it may damage the nanomotors in your mitochondria and slow down ATP energy production. As time goes by, the wear and tear on your nanomotors caused by the heavy hydrogen atoms may completely break your nanomotors. This damage may cause muscle pain, dehydration, impaired memory, poor sleep, headaches, and lymph nodes.
Two “D-terminator” diagnostic tests can help measure the deuterium levels in your body. Advanced technology, such as magnetic resonance imaging (MRI), can also be used to visualize and track deuterium patterns in your body, whether it’s in your bodily fluids, DNA, or even your hair and nails. Based on these tests, your doctor will be able to determine your deuterium levels. And when it shows to be excessive, he/she may come up with a plan to deplete deuterium in your body.
We experience high deuterium levels because of what we eat or drink and some other environmental factors. For instance, carbohydrates, processed foods, and synthetic supplements contain high levels of deuterium. Tap, ocean, and river water also have high deuterium levels, so when you’re exposed to these things regularly, you may experience an overload of this hydrogen isotope.
Nutrition is the baseline of depleting deuterium. Based on your test results, your doctor may recommend consuming food groups that contain lower levels of deuterium, such as proteins, green vegetables, and healthy fats. You may also be advised to drink deuterium-depleted water to lower your deuterium levels.
Health experts say that a body that functions properly can naturally regulate deuterium levels and produce healthy amounts of ATP energy.
Red and near-infrared light can affect our body’s hydrogen bonds in a process quite similar to photosynthesis. The water inside our cells usually becomes less harmful when our bodies absorb wavelengths of red and near-infrared light between 600–950 nanometers. This helps with proper cellular respiration and helps increase ATP energy production in your body.
Changing the water's resistance in your body, red, and near-infrared light can help reduce the amount of friction at the cellular level, promote cellular longevity, and lead to higher outputs of good energy.
To learn more about the benefits of red light therapy or to see what kind of red and near light therapy devices you can use to lower your deuterium levels, click here.
According to the Centers for Disease Control and Prevention, approximately 800,000 stroke incidents occur every year. No two-stroke incidents are the same. Stroke patients suffer complications such as loss of motor skills or partial paralysis on one side of the body.
A person can feel excruciating muscle pain, contractions for long periods of time, or spasms during the recovery process. This muscle tightness is known as spasticity or hypertonia. Sometimes patients experience muscle weakness down one side of the body, known as hemiparesis. One of the best treatments for muscle spasticity and strengthening muscle function is physical therapy.
The recovery process is dependent on the continued movement of the affected muscles. For example, some patients are known to keep their affected shoulder tense due to pain from the arm remaining relaxed and hanging. This leads to more complications, pain, and tightness. Everyday tasks such as lifting a fork, sweeping a floor, or driving a car can feel impossible for some. While pain is felt in the shoulder, arm, or leg muscles — these muscles are mostly healthy. It is the brain circuits and nerves between the brain's connection to these body parts that are damaged and need to be strengthened. Often, stroke patients do not find relief from even the strongest pain medication. Regardless, stimulating the muscles and pained areas with physical therapy strengthens the brain's connection and generates the healing process.
The National Library of Medicine has shared a study conducted in 2016 on stroke patients and red light therapy. The study concluded that red light therapy “may contribute to increased recruitment of muscle fibers and, hence, to increase the onset time of the spastic muscle fatigue, reducing pain intensity in stroke patients with spasticity, as has been observed in healthy subjects and athletes.” Another study from The National Library of Medicine on the effect of Photobiomodulation by red light-emitting diodes (LEDs) on nerve regeneration concluded with positive results. It was found in 2010 that “red to near-infrared LEDs have been shown to promote mitochondrial oxidative metabolism. In this study, LED irradiation improved nerve regeneration and increased antioxidation levels in the chamber fluid. Therefore, we propose that antioxidation induced by LEDs may be conducive to nerve regeneration.” Red light therapy works well to stimulate mitochondrial functions in cells and nerves. It can stimulate recovery 4 to 10 times faster than your body’s natural healing process.
Physical therapy is necessary for stroke patients, and when paired with full-body red light therapy, there is the potential to assist efforts towards pain reduction significantly. Photobiomodulation or red light therapy stimulates cells and helps repair the myelin sheath covering nerve fibers to accelerate their healing process and can have a positive effect on repairing broken neural pathways in the brain disrupted by stroke incidents.
In Kaiyan Medical, we develop all types of light therapy devices. We believe in the holistic approach to balance your body.
When it comes to muscle and joint stiffness, osteoarthritis, and arthritis, the one thing in common is pain and inflammation. When suffering from joint and muscular conditions, a person’s range of motion decreases, and swelling and skin redness increase, making everyday tasks a struggle.
Many young to middle-aged people are unaware of these conditions as they’ve been labeled as conditions mainly for the elderly; however, things have changed.
Though these conditions are common within the elderly community, we’re seeing an increase among young adults. In the United States alone, 23% of adults — over 53 million people — have arthritis, according to the Centers for Disease Control and Prevention (CDC). In other words, joint pain isn’t just for old age, as we once thought.
Rheumatoid arthritis (RA) appears in every 8 in 100,000 people between 18 and 34 years old. Of course, no one — young or old — wants to wake up feeling joint stiffness, swelling, or pain every morning.
However, the old myth that arthritis is untreatable is about to be debunked with light therapy.
Naturally, a medical professional will have to make a conclusive arthritis diagnosis. However, once diagnosed, many people find home treatments to deal with the pain — like light therapy. And the people who are undergoing light therapy are receiving incredible pain relief from their treatment. For example, a study published in the Turkish Journal of Physical Medicine and Rehabilitation found that infrared light treatment on inflammatory arthritis of the spine (spondylitis) encouraged increased function and improved quality of life for participants.
But what’s the science behind red light therapy treating joint conditions? Red light therapy uses low levels of red light to stimulate a natural response to cell performance. The light penetrates through the layers of the dermis, entering the muscles and nerves. As the cells absorb the energy, they become more active, with increased blood flow to the treated area, promoting cell regrowth and regeneration. Through this combination of increased blood flow and cellular activity, it rapidly reduces inflammation and pain.
With the recent advancements in modern technology, those who have arthritis or other joint conditions no longer need to opt for nonsteroidal anti-inflammatory drugs (NSAIDs) or corticosteroids. These forms of the medication come with serious side effects such as edema, heartburn, stomach ulcers, cataracts, bone loss, and elevated blood clots. This alternative non-invasive treatment allows people to choose a drug-free treatment that reduces swelling, inflammation, and pain through red light therapy.
A study published in the National Library of Medicine found that elderly patients who underwent red and infrared therapy treatment had reduced their pain by 50%. Besides, they found participants who underwent red and infrared light therapy had a significant improvement in function. Another study from 2016 saw a substantial reduction in pain and an increased range of motion after five to seven red light therapy treatments for Bouchard’s and Heberden’s osteoarthritis. These studies are only a few examples of how red light therapy shows results as an effective treatment.
A little red light can go a long way for your body, mind, and soul. More and more people recognize the benefits of red light therapy as a natural home treatment. For people suffering from any joint condition, red light therapy will reduce inflammation, eliminating joint and muscle pain.
But there’s more to red light therapy than this. It’s important to be reminded that light therapy also heals other ailments in the body. Red light therapy is effective for injuries, muscle recovery, cancer side effects, skincare, and depression.
With an FDA-approved and MDA-certified Lunas red light therapy device, users can achieve optimal therapeutic results by merely exposing their bare skin to the light for a few minutes per day. Healing yourself doesn’t need a lot of time or money; you need the right tools. Lunas light therapy devices have the power to heal bodies and minds all around the world.
Skincare doesn’t just affect the way you look. It also plays a huge role in your overall health — from body temperature to hormone regulation to your immune system. If you’re into skincare as much as we are, one of the many ways that can help you keep your skin healthy is red light therapy. In this article, we’ll take a deep dive into why you should take care of your skin, and we’ll also discuss how red light therapy devices can help you achieve your skin goals.
Are you ready? Let’s go straight into it.
As the largest organ in our body, your skin is your body’s first defense line to bacteria, germs, viruses, etc. It’s a vital part of the immune system and some processes in your body, such as temperature control, blood circulation, and hormone production.
Main Functions of the Skin
Let’s take a look at the skin's main functions to help you understand how essential it is for you to take care of this vital organ.
1. Defense and Immunity
The skin is an active immune organ, and it serves as our physical barrier from the dangers of the environment. It helps protect our bodies from diseases, germs, viruses, dirt, UV radiation, and potential thermal and physical injuries. It also helps detect and fight off infection, toxins, allergens, hazardous substances, and carcinogens.
2. Temperature Regulation
Aside from protecting us from extreme cold or heat, the skin also helps prevent moisture loss, keeping us from being dehydrated.
3. Sense of touch
The skin has a somatosensory system that is composed of touch receptors and nerve endings. This system is responsible for the sensations we feel, including pain, pressure, vibrations, smoothness, roughness, heat, cold, tickle, itch, and more.
4. Storage and Production of Vitamin D
Your body also uses your skin's deeper layers to store metabolic products, fat, and water. The skin is also responsible for producing vitamin D, supplied in the body when the skin gets enough sunlight exposure.
5. Beauty
Need we say more? Your skin plays a huge part in your appearance. Of course, when your skin is healthy, you also look glowing, radiant, and definitely more attractive.
Before we proceed with the “how,” let’s first define what red light therapy is. Red light therapy is a non-invasive treatment option for different kinds of medical conditions. It is also used for health improvement and various aesthetic procedures.
Decades ago, red light therapy machines were only available in clinics, high-end salons, and spas. Nowadays, red light therapy devices can be bought and used by anyone. In fact, you can do red light therapy at the comfort of your home and incorporate it into your skincare routine.
Red light therapy works by delivering wavelengths of red and near-infrared (NIR) light to our cells and skin. Besides helping enhance cellular function, red light therapy also helps stimulate the mitochondria and produce ATP (adenosine triphosphate) energy. This treatment option usually takes only about 10 minutes per session.
Our skin relies on millions of cells to be able to perform its functions. When our cells experience homeostasis or a state of balance, our skin and body perform (and look) better. And as mentioned above, red and NIR light enhances cellular function while also preventing inflammation and oxidative stress. Red light therapy helps make your skin look and feel softer, smoother, and healthier.
Besides, red light therapy also helps damaged tissues heal and regenerate faster. It also has anti-inflammatory benefits, potentially increasing blood flow to damaged and inflamed tissues and reducing oxidative stress.
Skincare is self-care, as keeping your skin healthy also produces multiple benefits to your health. Thankfully, aside from proper hygiene, regular exercise, a balanced diet, and an established skincare routine, red light therapy can also improve your overall skin health.
For more information about red light therapy or to view our catalog of red therapy devices, click here.
https://www.hse.gov.uk/skin/professional/causes/structure.htm
"Metastatic breast cancer can be a devastating diagnosis with high rates of relapse and death, and there are currently no effective therapies,"
Nalinikanth Kotagiri, MD, Ph.D. says.
"Despite newer treatments, many patients still succumb to the disease. Major limitations include acquired resistance to therapies and serious side effects from treatment. Due to the widespread location of breast cancer cells, particularly in the bone marrow, which harbors the tumor cells as well as vital stem cells, the risk of toxicity is even higher with conventional therapies. Therefore, new therapeutic strategies that selectively destroy tumor cells, increase treatment efficacy, prevent relapse and reduce side effects by sparing the healthy stem cells are necessary."
This is why Nalinikanth Kotagiri, MD, Ph.D., assistant professor in the James L. Winkle College of Pharmacy and a cluster hire for the Cincinnati Cancer Center, is hoping to study ways ultraviolet light can activate light-sensitive drugs to treat this invasive breast cancer and provide that light at the end of the tunnel patients yearn for.
Kotagiri has been awarded the Department of Defense Breast Cancer Breakthrough Award—over $600,000 for three years—to try to do just that. His project will focus on light-mediated therapies, which could activate light-sensitive drugs to target only the cancerous cells.
"Therapies such as photodynamic therapy (PDT), involving light and a photosensitizing chemical substance, which used in conjunction with molecular oxygen can cause cell death, offer a high degree of control that is effectively used to manage cancer in early to advanced stages," he says. "It operates on a simple principle where a light-sensitive drug, which is otherwise nontoxic, introduced into certain tissues can cause cell death when activated by light. Despite the promise of PDT, it can't penetrate tissue deeply so its use is limited. Also, current light-sensitive drugs require oxygen to be effective, but many tumors, including breast tumors, have pockets of low oxygen or grow in regions where oxygen is either low or absent, which could prevent effective application of PDT in cancer treatment."
However, Kotagiri says recent work in the lab has led his team to a "two-pronged approach" in addressing these issues.
"We've been using ultraviolet (UV) light from radionuclides (radioactive nuclide or atom), which are already used to image tumors and tissues, and tried to solve oxygen dependence by using metal-based light-sensitive drugs for depth- and oxygen-independent PDT," he says. "By replacing the external light source, such as lasers and lamps, with light from radionuclides as an 'internal' light source, we've been able to better control therapy in the body.
"This could mean more effective therapies with minimal toxicity to vital organs and tissues. Since radionuclides are used in imaging and locating tumors, we can now simultaneously image and treat breast cancer metastasis using the same radionuclide."
Using animal models, researchers in Kotagiri's lab will test whether radionuclide light activation of tumor targeting, light-sensitive drugs will destroy metastatic cancer cells—including those that are resistant to traditional therapies.
"Since how we're killing the cells is not dependent on a certain molecular pathway, the technology could be applicable to treat a wide variety of breast cancers," he adds. "This has the potential to be a common image-guided treatment strategy to treat patients in early as well as advanced stages of the disease, and because of the safety of this treatment strategy, it could be effectively used alongside other treatments, like chemotherapy and immunotherapy, without the risk of additional side effects.
"This could tremendously benefit patients, as it could potentially improve therapeutic outcomes in addition to setting a precedent to tailor other FDA-approved light-sensitive drugs as radionuclide activated therapies, expanding the scope and range of the diseases these drugs currently treat. If proven beneficial, this treatment could be ready for a patient population in 5 to 10 years, since all the materials involved have already been used in humans—this could be an exciting breakthrough."
ClinicalTrials.gov Identifier: NCT04418856
Besides what Kotagiri said, severe fatigue, depression, sleep problems and cognitive impairment are the most commonly reported side effects of cancer treatment. These aversive side effects are hypothesized to be related to the disruption of circadian rhythms associated with cancer and its treatment. Exposure to Bright White Light (BWL) has been found to synchronize the circadian activity rhythms but research with cancer patients has been scarce. Therefore, the proposed randomized control trial (RCT) will test if systematic light exposure (sLE) will minimize overall levels of cancer-related fatigue (CRF), depression, sleep problems and cognitive impairment among breast cancer patients undergoing breast cancer treatment (i.e., surgery, chemotherapy). SLE incorporates the delivery of harmless UV-protected BWL or Dim White Light (DWL - standard comparison in light studies) delivered to patients by using special glasses for 30 minutes each morning, during their treatment.
Learn more about the how to improve your circadian rhythm and light therapy & breast feeding