The one thing we have in common with animals, plants, and other living organisms is that we are all made of tiny little cells. The intricate human body in itself houses trillions of cells. Without cells, there wouldn’t be any life on Earth at all.
In this article, we discuss cellular anatomy and cellular function. Here, we understand how light plays a role in the support and acceleration of cellular respiration.
Think of cells as the basic building block of all living organisms. As the smallest unit of life, cells contain many parts, each with a different and specific function. The command center of the cell is called the nucleus that contains the human DNA.
As these cells combine to form into an organism, they become responsible for vital activities like nutrient intake, energy production, structure building, and hereditary material processing. They make sure that your body gets enough energy and nutrients to function 24/7.
One essential activity that our cells do for us is by taking in oxygen and nutrients to fuel body energy. This energy unit that is converted by the cells is called Adenosine Triphosphate (ATP) Energy.
The ATP itself is a molecule packed with high energy that empowers cellular function. ATP is required by the body to do every activity. Other cells that do more strenuous activities like muscle cells would need more ATP than others. The ideal optimal cellular function would allow cells to produce and use enough energy to achieve body balance or homeostasis.
The mitochondria are the powerhouses of the cell. They are responsible for the production of ATP. Aside from cellular energy, this double-membrane powerhouse does protein synthesis, cell signaling, and cell apoptosis. ATP is produced with oxygen (aerobic) or without oxygen (anaerobic), the former being more beneficial because it converts more energy. Thus, 95% of cellular energy goes through an aerobic process.
Our cells go through a process called Aerobic cellular respiration to convert oxygen, food, and water into the body’s energy currency, which is ATP. This process is a well-organized metabolic pathway that consists of four stages. Our bodies take in nutrients from the food we eat for the first two stages to convert them into carbon compounds. Then for the next steps, these carbon compounds are transformed into the energy that our cells use.
Light can sometimes be less attributed to improve our body’s physiology. However, light has benefits that go beyond aesthetic and technological purposes. Just like how light plays a role in plants' photosynthesis, it also benefits human cellular function.
Red light therapy from Kaiyan Medical composes of Red and Near-Infrared Wavelengths that aid in the Mitochondria's function to produce more ATP energy. It works by increasing the number of Mitochondria in our cells and by boosting their function.
The electron transport chain heavily governs the cellular respiration process. Red Light therapy has photons that can boost the mitochondria to function better through the Cytochrome C Oxidase. It plays an essential role in the cellular respiration process by improving the cell's electron transfer process. In this way, more ATP can be produced by the body for an enhanced cellular function.
As mentioned earlier, oxygen plays an essential role in the cellular respiration process. The infamous Nitric Oxide can take the rightful place of oxygen to limit ATP production that causes stress and cellular death. Red light therapy also gets rid of a harmful roadblock to ATP in the dissociation of Nitric Oxide and the Cox. The photons from Red light therapy prohibits the production of nitric oxide.
The effect that Red Light therapy does on our body is that by improving cellular function, our body can achieve these benefits:
As you do daily activities such as eating, drinking, walking, or working out, think of the massive role that your cellular system plays to make these activities possible. In this way, you can put conscious efforts into improving your cellular system through a healthy diet and lifestyle and by integrating Red Light Therapy.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5215870/
https://www.medicalnewstoday.com/articles/325884
https://www.britannica.com/science/cell-biology
https://www.britannica.com/science/mitochondrion
Written by the best, for the best.
Migraine is a neurological condition that can cause multiple symptoms. It’s frequently characterized by intense, debilitating headaches. Symptoms may include nausea, vomiting, difficulty speaking, numbness or tingling, and sensitivity to light and sound. Migraines often run in families and affect all ages.
People describe migraine pain as:
Migraine symptoms may begin one to two days before the headache itself. This is known as the prodrome stage. Symptoms during this stage can include:
The effects of green light on the brain have been researched and well-documented for years. The green light can reset the circadian rhythm through melatonin, the hormone that regulates our sleep-wake cycles. A special photoreceptor system in the human eye picks up light and elicits non-visual responses, sending signals to the brain to reset the body’s internal clock and altering melatonin production levels.
Long-time sufferers of migraines and other chronic pain conditions may benefit from exposure to LED green light. A new study, led by pharmacologist Mohab M. Ibrahim, M.D., Ph.D., found that the color green may be key to easing pain.
Ibrahim’s interest in studying the ameliorating effects of green light was inspired by his brother, who has dealt with severe headaches for several years. Instead of taking ibuprofen, his brother would sit in his garden and soak up the verdure of nature to ease the pain from his headaches.
“I wanted to see what is in his garden or in a garden, in general, that would make headaches better,” said Ibrahim, director of the Chronic Pain Management Clinic at Banner — University Medical Center Tucson.
In his clinical practice, Ibrahim also saw that his patients suffering from migraines and fibromyalgia had limited treatment options, and wanted to find a novel, non-invasive, nonpharmacological therapy.
In his study, which has yet to be published, Ibrahim exposed 25 migraine volunteers first to white lights for two hours as a control, then to green LED lights. He measured multiple parameters, including pain reduction, frequency of migraines or headaches, frequency of fibromyalgia flare-ups, pain intensity and duration, and quality of life.
On a scale of 0 to 10, with 0 indicating no pain and 10 the highest level of pain, migraine volunteers had an initial average baseline pain score of 8. After completing the green light therapy, their score dropped down to an average of 2.8. The frequency of headaches dropped from 19 to 6.5 per month, and the overall quality of life climbed from 48 percent to 78 percent.
“The best part about it … is the simplicity, the affordability and, most importantly, the lack of side effects,” Ibrahim said. “It’s a normal light. We’re not using a high-energy laser or anything like that.”
But if pain works through the nervous system, how exactly can green light, which works through the visual system, make people feel better?
New studies show that there are neuronal connections that span from the retina all the way to the spinal cord, passing through the parts of the brain that control and modulate pain. Green light changes the levels of serotonin and alters the endogenous opioid system, an innate pain-relieving system found throughout the central and peripheral nervous system, gastrointestinal tract, and immune system, said Bing Liao, M.D., a neurologist at Houston Methodist Hospital.
“The endogenous opioid system … allows the body to generate something similar to opioids and gives us a sensation of pain relief and happy feeling,” Liao said. “Research has found that, with green light, the receptors of the endogenous opioid system can increase production in the brain and body, and the hormone by itself can increase in production, as well. … It might be an explanation for why people feel good when they’re in a green environment.”
While more studies must be done to test the efficacy of green light therapy as a treatment for chronic pain, Ibrahim said he is trying to advance this therapy as a complement to current therapies.
“What this green light therapy offers is a non-invasive, non-pharmacological additional tool, so it might help reduce opioids,” he said. “I don’t think it will eliminate opioids, but at least it may reduce it enough. It may provide people just with extra help or extra relief so that they may not need the number of opioids that they’re on.”
https://www.ncbi.nlm.nih.gov/pubmed/28001756
https://www.ncbi.nlm.nih.gov/pubmed/21182447
https://www.ncbi.nlm.nih.gov/pubmed/23964217
https://www.ncbi.nlm.nih.gov/pubmed/7769534
https://www.ncbi.nlm.nih.gov/pubmed/26989758
"Metastatic breast cancer can be a devastating diagnosis with high rates of relapse and death, and there are currently no effective therapies,"
Nalinikanth Kotagiri, MD, Ph.D. says.
"Despite newer treatments, many patients still succumb to the disease. Major limitations include acquired resistance to therapies and serious side effects from treatment. Due to the widespread location of breast cancer cells, particularly in the bone marrow, which harbors the tumor cells as well as vital stem cells, the risk of toxicity is even higher with conventional therapies. Therefore, new therapeutic strategies that selectively destroy tumor cells, increase treatment efficacy, prevent relapse and reduce side effects by sparing the healthy stem cells are necessary."
This is why Nalinikanth Kotagiri, MD, Ph.D., assistant professor in the James L. Winkle College of Pharmacy and a cluster hire for the Cincinnati Cancer Center, is hoping to study ways ultraviolet light can activate light-sensitive drugs to treat this invasive breast cancer and provide that light at the end of the tunnel patients yearn for.
Kotagiri has been awarded the Department of Defense Breast Cancer Breakthrough Award—over $600,000 for three years—to try to do just that. His project will focus on light-mediated therapies, which could activate light-sensitive drugs to target only the cancerous cells.
"Therapies such as photodynamic therapy (PDT), involving light and a photosensitizing chemical substance, which used in conjunction with molecular oxygen can cause cell death, offer a high degree of control that is effectively used to manage cancer in early to advanced stages," he says. "It operates on a simple principle where a light-sensitive drug, which is otherwise nontoxic, introduced into certain tissues can cause cell death when activated by light. Despite the promise of PDT, it can't penetrate tissue deeply so its use is limited. Also, current light-sensitive drugs require oxygen to be effective, but many tumors, including breast tumors, have pockets of low oxygen or grow in regions where oxygen is either low or absent, which could prevent effective application of PDT in cancer treatment."
However, Kotagiri says recent work in the lab has led his team to a "two-pronged approach" in addressing these issues.
"We've been using ultraviolet (UV) light from radionuclides (radioactive nuclide or atom), which are already used to image tumors and tissues, and tried to solve oxygen dependence by using metal-based light-sensitive drugs for depth- and oxygen-independent PDT," he says. "By replacing the external light source, such as lasers and lamps, with light from radionuclides as an 'internal' light source, we've been able to better control therapy in the body.
"This could mean more effective therapies with minimal toxicity to vital organs and tissues. Since radionuclides are used in imaging and locating tumors, we can now simultaneously image and treat breast cancer metastasis using the same radionuclide."
Using animal models, researchers in Kotagiri's lab will test whether radionuclide light activation of tumor targeting, light-sensitive drugs will destroy metastatic cancer cells—including those that are resistant to traditional therapies.
"Since how we're killing the cells is not dependent on a certain molecular pathway, the technology could be applicable to treat a wide variety of breast cancers," he adds. "This has the potential to be a common image-guided treatment strategy to treat patients in early as well as advanced stages of the disease, and because of the safety of this treatment strategy, it could be effectively used alongside other treatments, like chemotherapy and immunotherapy, without the risk of additional side effects.
"This could tremendously benefit patients, as it could potentially improve therapeutic outcomes in addition to setting a precedent to tailor other FDA-approved light-sensitive drugs as radionuclide activated therapies, expanding the scope and range of the diseases these drugs currently treat. If proven beneficial, this treatment could be ready for a patient population in 5 to 10 years, since all the materials involved have already been used in humans—this could be an exciting breakthrough."
ClinicalTrials.gov Identifier: NCT04418856
Besides what Kotagiri said, severe fatigue, depression, sleep problems and cognitive impairment are the most commonly reported side effects of cancer treatment. These aversive side effects are hypothesized to be related to the disruption of circadian rhythms associated with cancer and its treatment. Exposure to Bright White Light (BWL) has been found to synchronize the circadian activity rhythms but research with cancer patients has been scarce. Therefore, the proposed randomized control trial (RCT) will test if systematic light exposure (sLE) will minimize overall levels of cancer-related fatigue (CRF), depression, sleep problems and cognitive impairment among breast cancer patients undergoing breast cancer treatment (i.e., surgery, chemotherapy). SLE incorporates the delivery of harmless UV-protected BWL or Dim White Light (DWL - standard comparison in light studies) delivered to patients by using special glasses for 30 minutes each morning, during their treatment.
Learn more about the how to improve your circadian rhythm and light therapy & breast feeding
Red light therapy is an easily accessible and affordable clinical device that boosts metabolism and increases ATP energy production. It is a non-invasive modulator of metabolism that delivers proper frequency, power, and luminance by shifting the mitochondria's function organically.
A ketogenic diet involves the consumption of low-carb, high-fat meals. When practiced together with red light therapy, it can amplify your metabolic flexibility. It also helps cells burn more sugar and fat efficiently. Good levels of ATP energy production (empowered by mitochondria by converting oxygen and nutrients to ATP) can help prevent high-blood or low-blood pressure conditions. The process of creating ATP energy works best when our body and cells are well-balanced, reaching a state called homeostasis.
One thing to consider in following a diet plan is over-nutrition, which may lead to metabolic inflexibility. When over-feeding happens, the production of ATP energy may result in metabolic congestion. Red light therapy can help alleviate this metabolic congestion by focusing amplification of ATP energy levels. Insulin can mediate metabolic congestion by the fluidity between glucose, fatty acids, and amino acids. An important step for ATP energy production is forming the COX enzyme, which can aid metabolism by pairing oxygen neutralized into the water with high-energy electrons.
If the COX enzyme goes out of sync with electrons' flow, the high-energy electrons won’t effectively be neutralized into water. Red light can help regulate the healthy formation of the COX enzyme, efficiently oxidizing fat. The ketogenic diet triggers cells to insulin by stimulating ATP energy production by increasing metabolic flexibility, reducing carbon combustion, and helping clear metabolic congestion.
The chemical DHEA (dehydroepiandrosterone) plays numerous vital roles in health. It helps with the metabolism of cholesterol that produces hormones such as progesterone, estrogen, and testosterone. As we age, our levels of DHEA decreases, as well as the synthesis of such hormones. Low levels of progesterone can affect women in their peri-menopausal and post-menopausal stages. This is a function of the decline in mitochondria, which then affects ATP energy levels.
Low levels of DHEA may contribute to the insufficiency of adrenaline and estrogen dominance, which is common to middle-aged women at the peri-menopausal or post-menopausal stage. Women rely on the production of adrenaline and DHEA to keep their progesterone levels and prevent estrogen dominance.
Lower production of DHEA and progesterone can be an effect of elevated secretion of cortisol that is caused by acute/chronic stress. When high levels of stress reduce the adrenal glands' proper functions due to the decrease of synthesis of the adrenal cortex steroid hormones in the mitochondria, it results in adrenal insufficiency.
Based on health professionals' studies, when cortisol levels drop, it inhibits the synthesis and secretion of DHEA/progesterone, resulting in pathophysiological changes caused by stress. Enzyme activation and regulatory signaling can affect the fluidity dynamics between cortisol, DHEA, and other hormones such as progesterone, estrogen, and testosterone.
Red light therapy and ketogenic diet can mediate inflammatory stress and regulate the healthy production of DHEA.
Estrogen is a master regulator of female metabolism. A youthful and regulatory expression of estrogen is the production of 17B-estradiol (E2). It modulates the menstrual cycle to ensure the healthy release of the corpus luteum, which secretes progesterone.
On the other hand, progesterone helps maintain a healthy uterus lining. When the expression of E2 is sufficient, progesterone secretion also increases. Having high progesterone levels means having lower estrogen and a lesser risk of getting diseases like breast, ovary, and colon cancer. E2 also contributes to potential partition fuel, orchestrating metabolic flexibility, and increasing energy levels that lead to optimal cerebral glucose metabolism.
The decline in the peripheral steroidogenesis of E2, progesterone, and testosterone is common as time goes by.
A 12-week ketogenic diet may increase testosterone levels in men due to an increase in cholesterol and DHEA. Red light therapy also improves the mitochondrial synthesis of testosterone from DHEA.
For males, testosterone naturally converts to E2, but healthy testosterone levels stipulate a hormonal challenge to the synthesis of E2. An enlarged prostate can be caused by estrogen dominance when there is no testosterone/estrogen ratio balance. Having healthy testosterone levels may lead to a decline of estrogen dominance, as it is for progesterone in women.
Healthcare professionals strongly believe that red light therapy can be a powerful healing agent that may help prevent diabetic ulcers and lower chances of extremity amputations when practiced together with a ketogenic diet.
Diabetic ulcers usually result to lower limb amputations in the long-run. Studies show that diabetic foot ulcers and lower extremity amputations are increasing in number. In fact, having unhealed wounds can be alarming as the post-amputation survival rate for people with diabetes averages to only five years. Statistics show the urgent need to prevent, detect, and prove that treatments for lower limb ulcers should be highly considered. Red light therapy has been proven to increase the circulation of blood flow and healthier skin.
Red light therapy and ketogenic diets are considered to be disruptive innovators in the healthcare system. Apart from the fact that red light therapy is non-invasive, such treatment shows great potential in helping lengthen the lifespan and improve people's overall health. Red light therapy also promotes a more affordable and accessible treatment that can be done in the comfort of your home.
Here at Kaiyan Medical, we offer red light therapy devices to help you achieve your health and aesthetic goals. To learn more about the brands and products we offer, please click here.
https://perfectketo.com/red-light-therapy/
https://perfectketo.com/keto-diet-plan-for-beginners/
Globetrotters know flying across time zones can be all fun and games until headaches start to kick in, sleep cycles get disturbed, and frequent moments of inappetence prevents them from enjoying even the most sumptuous local cuisine. If you’ve had any of these unfortunate events disturb your travel plans and work productivity, you’ve most likely experienced a jet lag.
Jet lag, also known as jet lag disorder is our body’s reaction to abrupt changes in new environments that are two or more time zones ahead/delayed. This can affect even the most seasoned flyers like pilots and business travelers.
Your body has a clock system called circadian rhythm that schedules your body for its sleep and wake up time. Your circadian clock is synced depending on your original time zone.
Jet lag is caused by a temporary discoordination with your circadian clock and your new time zone or sleep-wake schedule. This is why when you expose your body to abrupt schedule changes, its normal functions related to sleep, coordination, and gastrointestinal processes are disrupted. While your mind may be ready to fly west, your body may still be stuck home and is still hours ahead.
Jet lag can take days, weeks, or longer to improve, which may affect daily activities. In addition, although jet lag may be a temporary disorder, frequent exposure also poses significant long-term risks such as disturbances in menstrual cycle, cognitive defects, and temporal lobe atrophy.
One popular and effective treatment for jet lag disorder is Light therapy. Light therapy has been considered as a popular and effective treatment for jet lag disorder and has been backed by research since 1980.
Your body clock is largely influenced, among other factors by light, which is indicative of the rising and setting of the sun. This means that adjusting to a new time zone also means adjusting to a new daylight-night time and awake-sleep schedule.
Essentially, light therapy assists your brain and body in adjusting to a new time zone by conditioning yourself to light at an appropriate time. This allows your normal body functions to be in sync with your new schedule. By regulating light exposure, you can adjust faster with new conditions.
Studies show that exposure to light therapy helps people adjust their circadian clocks to new time zones more efficiently and effectively. Treatment of jet lag by Light therapy involves an exposure to natural or artificial light such as red light therapy.
Red light therapy is a non-invasive, quick and easy treatment for jet lag that brings concentrated natural light to your body cells in order to condition it for a new day-light schedule. Red light therapy emits natural light that can boost cell energy without the putting your body at risk of the damaging UV rays from the sun.
If you travel westwards, you can use Red Light in the evening to help you adjust to a later time. On the other hand, if you travel eastwards, you can expose yourself to red light in the morning in order to acclimate your body to an earlier time zone.
Kaiyan produces high-quality Red light therapy home devices that utilize medical-grade LED (Light-emitting Diode) in order to produce a natural red light that is ideal for adjusting to new time schedules.
The great thing about this device is that, if you often work away from sunlight, this indoor light therapy device can be a convenient way to adopt your circadian clock to a new time zone. Check out our top picks for the best FDA-cleared light therapy masks.
Experiencing jet lag may be the ultimate bummer for travelling, but sufficient knowledge and proper treatment can keep you away from ruining your travel plans and goals.
References:
https://www.scientificamerican.com/article/how-to-prevent-jet-lag/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2829880/
Color Light therapy is based on the idea of restoring balance by applying color to the body. Its history is rooted as far back as the Mayan culture.
In India, Ayurveda, an ancient form of medicine practiced for thousands of years, is based on the idea that every individual contains five elements of the universe that are present in specific proportions unique to each individual, including their personality type and constitution. When these elements are out of balance, Ayurveda works with the energies inherent in the colors of the spectrum to restore this balance.
In ancient Egypt the art of healing with color was founded in the Hermetic tradition, the Ancient Egyptians and Greeks used colored minerals, stones, crystals, salves, and dyes as remedies, and painted treatment sanctuaries in various shades of color.
In China, traditional Chinese medicine incorporates color to be associated with each organ and elemental system. This healing method looks at the idea that every individual is a balance. The first color wheel was invented by Sir Isaac Newton. He split white sunlight into red, orange, yellow, green, cyan, and blue. He then joined the two ends of the color spectrum together to show the natural progression of colors.
Light Therapy has been valued throughout history as a remarkable source of healing. Today, the therapeutic applications of light and color are being investigated in major hospitals and research centers worldwide. Results indicate that full-spectrum, ultraviolet, colored, and laser light can have therapeutic value for a range of conditions from chronic pain and depression to immune disorders.
Light Therapy has been reported, as part of a healthy lifestyle, to temporarily reduce swelling, relieve pain, decrease inflammation, accelerate open wound healing and greatly reduce overall recovery after medical/surgical procedures. Patients have demonstrated an increased range of motion, decreased muscle tension and spasm, and improved circulation.
Rejuvenating LED light therapy can be used for temporary pain management such as joint and back pain, sore or torn muscles, sprains, arthritis, post-surgical scars, burns, wounds, and more. When used with infrared technology, light therapy (phototherapy) is one of the most effective and non-invasive ways to improve overall wellness.
Light therapy is also used to temporarily relieve Seasonal Affective Disorder (SAD). SAD affects individuals when the lack of sunlight results in seasonal depression. Phototherapy helps with SAD by resetting the internal biological clock (Circadian rhythms), helping individuals sleep better, and regulate their mood. Even companies, such as GE and Philips, have created phototherapeutic products to improve and regulate mood.
Light therapy is also a growing treatment for anti-aging. Many individuals have seen a temporary reduction in the appearance of fine lines, wrinkles, crow’s feet, and age spots.
Light therapy is “effective at improving the appearance of the face, neck, and chest by reducing the signs of aging, wrinkles and age spots”, says Web M.D. Combined with infrared therapy, LED phototherapy can be a great way to revitalize skin.
Color is light split into different wavelengths vibrating at different speeds and at different frequencies. Objects that ABSORB all wavelengths and DO NOT reflect are black in nature. Objects that REFLECT all wavelengths and DO reflect are white in nature. Between black and white lies COLOR. Colors are wavelengths of energy that, to us, appear as color because of the potential and capabilities of the object to either absorb or reflect the energy.
In the early 1990s, RLT was used by scientists to help grow plants in space. The scientists found that the intense light from red light-emitting diodes (LEDs) helped promote the growth and photosynthesis of plant cells.
The red light was then studied for its potential application in medicine, more specifically to find out if RLT could increase energy inside human cells. The researchers hoped that RLT could be an effective way to treat the muscle atrophy, slow wound healing, and bone density issues caused by weightlessness during space travel.
You may have heard of red light therapy (RLT) by its other names, which include:
Red is called “The Great Healer”. So far is the most popular light therapy. To wind down before bed, use red light. “The color signals that it’s night, which may encourage the body to produce melatonin,” says Michael Breus, Ph.D., an advisory board member for SleepScore Labs.
Red light can also improve your workout. Just one to five minutes of exposure to red and infrared light right before exercise boosted strength and prevented soreness, says Ernesto Leal-Junior, Ph.D., the head of the Laboratory of Phototherapy in Sports and Exercise at Nove de Julho University in Brazil. “Certain wavelengths of red and infrared light-660 to 905 nanometers-reach skeletal muscle tissue, stimulating the mitochondria to produce more ATP, a substance that cells use as fuel,” he says.
Green is the universal healing color. Originally, the color of love. Green is midway in the color spectrum; therefore, it contains both a physical nature and a spiritual nature, in equal balance and in equal harmony.
Gazing at green light can reduce chronic pain (caused by fibromyalgia or migraines, for example) by up to 60 percent, according to a study in the journal Pain, and animal studies have shown that the beneficial effects can last up to nine days. “Looking at green light seems to lead to an increase in the body’s production of enkephalins, pain-killing opioid-like chemicals. And it reduces inflammation, which plays a role in many chronic pain conditions,” says researcher Mohab Ibrahim, M.D., Ph.D.
More studies are needed before doctors can make recommendations on how and how often to use green light to treat migraines and other pain, and Dr. Ibrahim says you should see a physician before trying to treat yourself at home. But at this point research indicates that exposing yourself to an hour or two every night-either by using a green light bulb in a lamp or by wearing glasses fitted with tinted optical filters-may decrease migraines and other types of chronic pain
Helps to treat and prevent hyper-pigmentation by inhibiting the production of excess melanin which then prevents it from traveling to the surface. It will help break up the melanin clusters that are already on the surface.
Yellow helps awaken mental inspiration arousing a higher mentality. Thus, it is an excellent color for nervous or nerve-related conditions or ailments; fueling the solar plexus. Yellow has a very enriching effect upon the intellect. Yellow can be used for conditions of the stomach, liver, and intestines. It can help the pores of the skin by repairing scarred tissue. These rays have an alkalizing effect which strengthens the nerves. Awakening, inspiring, and vitally stimulating the higher mind promoting self-control. Typical diseases treated by yellow are constipation, gas, liver troubles, diabetes, eczema, and nervous exhaustion. Providing clarity of thought, increasing awareness, stimulating interest, and curiosity yellow energy is related to the ability to perceive or understand.
The yellow is used for treating redness, flushing, irritation, and Rosacea. It may also reduce the appearance of the tiny blood vessels on the nose and face.
Blue light therapy technology is an additional option for the treatment of acne. Research has shown in-office and at-home systems produce positive results.
“Blue light therapy effectively helps alleviate this common skin condition affecting 50 million Americans and 94 percent of all females, according to Judith Hellman, MD, a board-certified dermatologist, in practice in New York City. Dr. Hellman, who practices medical dermatology and specializes in dermatological surgery, laser surgery, and anti-aging skin treatments, explains how the blue light treatment system works for acne, its uses, and her clinical experience with the technology.
It is used as a gentle acne treatment to control oil production in the skin as well as reduce inflammation. It also promotes the synthesis of protein and collagen.
Orange Light
Orange has a freeing action upon the mind, relieving repression. Because orange is a blend of red and yellow, it combines physical energy with mental wisdom, inducing a transformation between lower physical reaction and higher mental response. Thus, it is often referred to as “The Wisdom Ray.” Orange is warm, cheering, and non-constricting.
Through orange, we are able to heal the physical body (red) and, at the same time, induce within the mind (yellow) greater understanding. Orange helps assimilate new ideas. Orange is the best emotional stimulant, helping to remove inhibitions paving independent social behavior. Bring joy to your workday and strengthen your appetite for life. Orange aids in repairing inflammation of the kidneys, gallstones, menstrual cramps, epilepsy, wet cough, and all sinus conditions.
Purple Light
Violet is the last color we can see before light passes on to ultra-violet. Violet purifies our thoughts and feelings giving us inspiration in all undertakings. The violet energy connects us to our spiritual self bringing guidance, wisdom, and inner strength and enhances artistic talent and creativity. Leonardo da Vinci proclaimed that you can increase the power of meditation ten-fold by meditating under the gentle rays of Violet, as found in church windows.
Light therapy uses colors for their proposed wellness abilities in treating emotional and physical disturbances. Light therapy is based on the premise that different colors evoke different responses in people. For example, some colors are considered to be stimulating, whereas others may be soothing. Color therapy has been suggested for many uses, based on tradition or on scientific theories. Consult with a health care provider before using color therapy for any use.
Infrared Light
Infrared light penetrates to the inner layers of the skin at about 2 to 7 centimeters deep. Hence, it reaches the muscles, nerves, and even the bones. Many studies have shown that a frequency of infrared light, with wavelengths from 700 to 1,000 nanometers, is best used for healing inflammatory conditions.
The use of electricity for healing purposes began in 2,750 BC when people used electric eels to give electric shocks. Electricity and magnetism were used in people with just little success. However, in 1975, transcutaneous electrical stimulation (TENS) was developed to treat chronic pain. It was not until recently that infrared therapy was developed to improve wound healing, reduce the pain caused by arthritis, boost endorphin levels, and bioactivate neuromodulators.
Infrared therapy technology allows people to harness the benefits of the sun, without being exposed to harmful ultraviolet rays. Also, infrared therapy is safe and effective, without adverse side effects. As a matter of fact, infrared light is safe and is used even for infants in neonatal intensive care.
Infrared light is absorbed by the photoreceptors in cells. Once absorbed, the light energy kickstarts a series of metabolic events, triggering several natural processes of the body on a cellular level.
Kaiyan Medical
In Kaiyan, we are in love with light therapy. We believe in the natural balance in our bodies. We develop devices such as the Aduro mask which will provide you with the full range of color light therapies.
Deppe A. Ocular light therapy: a case study. Aust J Holist Nurs 2000;7(1):41.
Geldschlager S. Osteopathic versus orthopedic treatments for chronic epicondylopathia humeri radialis: a randomized controlled trial. Forsch Komplementarmed Klass Naturheilkd 2004;Apr, 11(2):93-97.
Maher CG. Effective physical treatment of chronic low back pain. Orthop Clin North Am 2004;Jan, 35(1):57-64.
Natural Standard Research Collaboration, Chief Editors: Ulbricht C, Basch E, Natural Standard Herb and Supplement Reference: Evidence-Based Clinical Reviews, USA. Elsevier/Mosby, 2005.
Ohara M, Kawashima Y, Kitajima s, et al. Inhibition Of lung metastasis of B16 melanoma cells exposed to blue light in mice. Int J Molecular Medicine 2002;10(6):701-705.
Wileman SM, Eagles JM, Andrew JE, et al. Light therapy for seasonal affective disorder in primary care: randomised controlled trial. Br J Psych 2001;178:311-316.
Wohlfarth H, Schultz A. The effect of colour psychodynamic environment modification on sound levels in elementary schools. Int J Biosocial Res 2002;(5):12-19.
Zifkin BG, Inoue Y. Visual reflex seizures induced by complex stimuli. Epilepsia 2004;45(Suppl 1):27-29.
Based on the American Journal of Case Reports e-ISSN 1941–5923, © Am J Case Rep, 2020; 21: e926779 DOI: 10.12659/AJCR.926779.
Authors: Scott A. Sigman, Soheila Mokmeli, Monica Monici, Mariana A. Vetrici
Team Physician, UMASS Lowell, Fellow of the World Society of Sports and Exercise Medicine, Fellow of the Royal College of Surgeons in Ireland, Chelmsford, MA, USA
See the full-text PDF here.
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The presentation of COVID-19 includes dyspnea, lung edema, and pneumonia. Morbidity and mortality are associated with acute respiratory distress syndrome (ARDS) and cytokine storm. Hospitalized COVID-19 patients are classified as severe if they require intensive care unit (ICU) admission [1,2]. Here, we report the first case of the use of supportive or adjunctive photobiomodulation therapy (PBMT) in a patient with severe COVID-19 pneumonia.
Photobiomodulation Therapy (PBMT) is the best technical term for Low-Level Laser Therapy (LLLT). It is a light therapy using lasers or LEDs to improve tissue repair, reduce pain and inflammation wherever the beam is applied.
PBMT is an emerging alternative modality with demonstrated anti-inflammatory effects in pain management, lymphedema, wound healing, and musculoskeletal injuries. Additional terms for PBMT include low-level laser (or light) therapy (LLLT), cold laser, and photobiostimulation. The effects of PBMT differ from the thermal effects produced by the high-power lasers used in cosmetic and surgical procedures to destroy the tissue. PBMT is non-invasive, cost-effective, and has no known adverse effects.
Empirical use of PBMT in children, adults, and elderly patients with pneumonia, asthma, chronic bronchitis, or pulmonary fibrosis resulted in reduced chest pain and heaviness, normalization of respiratory function, shortened recovery times, and improved immunological and radiological parameters.
A 57-year-old African American man with a history of hypertension and asthma presented with shortness of breath, severe dehydration ´ renal failure. A physical examination revealed labored breathing, weakness, and fatigue. Chest X-rays demonstrated worsening bilateral lung infiltrates. The patient had been in the ICU for respiratory depression.
The diagnosis of SARS-CoV-2 was confirmed for this patient by reverse transcription-polymerase chain reaction by the nasopharyngeal swab. Patient consent was obtained for an FDA-guided and International Review Board-approved trial of laser treatment for COVID-19 (Lowell General Hospital Federal-wide Assurance number 0001427).
The patient was treated with an FDA-cleared Multiwave Locked System (MLS) Therapy Laser (ASA Laser, Italy.) The MLS laser utilizes a mobile scanner with 2 synchronized laser diodes, one in pulse mode (adjustable to 1–2000 Hz), emitting at 905 nm, and another in pulsed mode emitting at 808 nm. The 2 laser beams work simultaneously and synchronously. This laser is used in pain centers for the treatment of musculoskeletal pain and inflammation.
The patient tolerated all 4 daily treatments and noted significant improvement in breathing immediately after each treatment. Paroxysmal coughing spells resolved after the third treatment. Upon completion of the fourth treatment, the patient was able to ambulate in the room with physical therapy. On the day following his final treatment, the patient was discharged to an acute rehabilitation facility on 1 L/min oxygen. On the day after arrival to the acute rehabilitation facility, the patient was able to complete 2 trials of stair climbing with physical therapy and was in the process of weaning to room air.
The patient’s response to PBMT was evaluated by comparing different scoring tools before and after laser therapy. The patient showed improvement in all evaluation criteria.
This report has presented a patient with severe COVID-19 pneumonia associated with ARDS who was given a supportive treatment with PBMT. Based on this case report, as well as clinical experience of PBMT in respiratory tract diseases in humans, professionals consider PBMT to be a feasible adjunct modality for the treatment of COVID-19. There are published experimental work demonstrating the anti-inflammatory effect of PBMT on lung tissue. Professionals suggest that the use of adjunct PBMT in the early stages of severe ARDS seen in COVID-19 patients can enhance healing and reduce the need for prolonged ventilator support and ICU stay.
Phototherapy, also known as light therapy, is widely known as a safe, non-invasive, and non-pharmaceutical treatment option for various conditions, including depression, joint and muscle conditions, skin disorders, and insomnia. Today, light therapy is an FDA-approved and MDASAP-approved cosmetic procedure for all skin conditions. It provides anti-inflammatory healing, increases collagen production, and reduces acne scars, giving the skin they always wanted.
While NASA was using this form of therapy in the 1960s, light therapy has been around for hundreds of years. Solariums existed in China around 6,000 BC. During that time, Chinese architects designed their homes facing the south so that sun would heat the interior of the home, a design practice still being used today. Families gather around the windows, absorbing as much sunlight as possible. It wasn’t long until solar-heated homes became a common practice in Greece and Rome.
But this is just a small opening into the history of light therapy. We’re going to dig a little deeper and show you how light therapy started, from the Chinese to the Greeks to today.
The Greeks
Light therapy originates back to the ancient Greeks. Heliopolis, the city of the sun, was known for its healing temples, which used sunlight spectrums to assist with specific medical issues. This is where heliotherapy, the exposure to light, comes from.
Socrates believed the ideal home should cool in the summer and warm in the winter, a concept we still believe today. However, 2,500 years ago, the Greeks didn’t have the heating systems we have today.
During that time, they would use wood to heat their homes and cook. Wood was also used for fuel, to build homes and ships. But it was destroying the local ecosystem. Plato compared the hills of Attica to the bones of a body. He said,
“ All the richer and softer parts have fallen away…..and the mere skeleton of the land remains.”
With wood damaging the local environment, the Greeks sourced wood further away. This resulted in the cost of fuel prices increasing. Luckily, they had an alternative option for energy which was the sun - and it was free.
Greeks took advantage of the sun and started to build their homes with the sun in mind. The homes faced the south, allowing access to the sun during winter. The citizens were ecstatic as it saved them money and resources.
Greeks fell in love with their solar-friendly homes. Theophrastus, a naturalist, commented that Greeks believed,
the sun provides life-sustaining heat in animals and plants. It also probably supplies the heat of earthly flames. They believed they were catching the sun when making fire.
Exposure to natural sunlight became known as an important element to a healthy life. Oribasius, an ancient medical authority, stated that south-facing homes were healthy places to live in due to their exposure to the sun.
Dr. Niels Finsen, a Danish physician and scientist, received a Nobel Prize in Medicine in 1903 for his contributions in treating lupus vulgaris and other illnesses via concentrated light radiation.
His award and recognition opened up endless possibilities for light therapy in the medical industry. Finsen discussed the use of ‘chemical rays of light’ in 1896. When he said ‘chemical light,’ he meant ionizing light, such as ultraviolet rays.
Decades of research proved that light therapy produced therapeutic benefits for living tissue. In the 1960s, in Europe, single wavelengths through photo-stimulation had therapeutic effects on tissue. An example is the practice of light therapy on newborns with jaundice.
Light therapy gained popularity from the 1980s to 1990s, with more clinics and medical facilities seeing the benefits of light therapy to treat conditions and illnesses. The cosmetic benefits of light therapy became recognized during this period of time.
Professional athletes discovered light therapy as an ideal option for sports-related injuries as well. Research showed that an injured person who undergoes light therapy recovers 50 times faster than a person who doesn’t.
The development of red light therapy became unstoppable by the early 2000s. More companies jumped on board to produce light therapy devices for medical and aesthetic purposes. The devices come in varying lights and sizes to help aid specific conditions. Some research also found that red light therapy combined with topical cream can kill specific cancer cells.
We hope this quick background on the roots of light therapy has given you more insight into its effectiveness as a solution for clinical and aesthetic treatment. If you’re considering your own private label, we’re more than happy to explore this journey with you.
Here at Kaiyan Medical, we ensure all our red light therapy devices are FDA-certified and MDASAP-approved, ensuring you the safest products for professional use. To learn more about our light therapy products and devices, contact our team.
Migraines are considered one of the most disabling illnesses in the world, most of whom are unable to function normally during a migraine. Migraines are much worse than the common headache - bringing on excruciating pain and other symptoms like dizziness, blurred vision, or vomiting.
Green light therapy lamps have been recommended by Harvard Medical School headache specialist Rami Burstein who found that light exacerbates migraines. Photophobia (extreme sensitivity to light) is associated with more than 80% of migraine attacks - but the green light in his research is different. He found that a narrow wavelength of green light is less aggravating than other colors because it sends a smaller, less disruptive signal to the brain via the visual cortex.
Stueids have been recording of dura- and light-sensitive thalamic neurons in rats to show that green activates cone-driven retinal pathways to a lesser extent than white, blue and red; that thalamic neurons are most responsive to blue and least responsive to green; and that cortical responses to green are significantly smaller than those generated by blue, amber and red lights.
"It became apparent that we should be able to use a narrow band of green light to treat photophobia," Burstein says.
Now patients could put their kids to bed, read a book, or enjoy a hearty meal with friends - instead of being isolated in darkness. Not only did green light fail to trigger pain, his research even found that it has a soothing effect.
Padma Gulur, who does not work with Burstein, is looking into the possibility that green light might relieve other forms of pain besides migraines. Already one year into a clinical trial - testing the effects of green, blue, or white light on people's post surgery or fibromyalgia pain experience - Gulur says the data looks promising that green light therapy could provide benefit to those in pain. Gulur, a Duke University anesthesiologist, says that finding a way to reduce pain without drugs is essential, given the addictive nature and side effects of opioids and other pain relievers. Not only did green light fail to trigger pain, his research even found that it had a soothing effect.
"We have very few options that are safe, easy to comply with, and have an impact on the pain experience. So it was a quest for non-pharmacological options that could help patients in pain that led to looking at the potential for light-based therapy," she says
Mohab Ibrahim, an anesthesiologist at the University of Arizona, found that when rats were exposed to green light, they felt less pain - or, at least, they were able to tolerate more discomfort in the form of heat or pressure. Wondering which mattered more - the light washing over the skin or contacting the eyes - Irbahim created tiny, rat-sized contact lenses. He found that when rats were wearing the contact lenses, which let only green light through, they similarly showed less discomfort.
Green light exposure has been found to significantly reduce migraine intensity and discomfort from fibromyalgia. In Kaiyan Medical we can create your green light therapy device to treat migraine and other conditions.
While you were taking a shower, you had this amazing idea of a medical product that could potentially become a pioneer of its own kind. After consideration, you’ve decided to jump into the innovative and adventurous world of the medical device industry. But then, the confusing question will arise — “What is a medical device?”. If you find yourself wondering about this, there’s no need to worry. We are here to guide you on this journey of medical devices.
Medical devices could range from simple contact lenses to prosthetic knee implants and medical devices with embedded software like pacemakers. A medical device could be the smallest medical apparatus to the most complex.
The big question is not what is a medical device? but who defines what a medical device is?
In the USA, all medical devices are defined and regulated by the food and drug administration (FDA). The center for devices and radiological health (CDRH) is the specific branch intended for medical devices. It has complete jurisdiction over it.
A medical device is not only a commodity in the market but is also a state-regulated healthcare product, to which the state’s accountability towards its people. What makes a product a medical device is if its features become congruent to that of the definition stated under the stipulations of the FDA.
A medical device is quite simply and plainly defined under Section 201(h) of the Food, Drug, and Cosmetic Act as:
An instrument, apparatus, implement, machine, contrivance, implant, in vitro reagent, or other similar or related article, including a component part, or accessory which is:
You must define the intended use of your product and its indications. Its intended use includes the purpose of your device while its indications describe the condition that it aims to treat, diagnose, or prevent. Once you have written down all these specifications, it will be easier to determine if your product meets the FDA’s definition of a medical device or not.
Your medical device should have a proper medical device classification. This classification should follow FDA guidelines as well. Classification also highly depends on the product’s intent and its indications for use. Changing your product’s user market affects the classification of your product as well. The higher the class number, the more stringent regulatory measures are required to ensure the safety and effectiveness of your device.
The FDA has the following classifications for a medical device:
This can be divided into devices that require general controls and those that have a special exemption. The exemption should be stated upon classification.
General controls can be found in the following sections of the FD&C Act:
2. Class II- general controls and special controls
The moderate risk that comes with Class II medical devices requires what is known as “special controls” since general controls alone are not enough. These special controls are relative to the context of each device.
Here’s a list of special controls that are usually device-specific:
3. Class III- general controls and premarket approval (PMA)
According to the FDA, Class III medical devices are those that are “intended to be used in supporting or sustaining human life or preventing impairment of human health.”
All devices that fall under this category are subject to what is known as premarket approval by the FDA. Premarket approval requires extensive experimental procedures and scientific pieces of evidence. It can come in the form of a clinical trial, to prove that the device will be safe for the users.
The definition could be confusing at times with other products such as pharmaceuticals, general wellness products, software products, or combination products
Mixed products
Combination products are a mix of products that have are different by nature. For instance, a combination product is a mixture of a drug and a device, a biologic and a drug, a biologic and a device, or a mix of all three together. Therefore, by definition, a stand-alone medical device cannot be a combination product.
Pharmaceuticals
Pharmaceuticals are medicines and are chemical in nature designed to engage and actively interact with the body’s system. Medical devices are by nature mechanical and work only if they are used correctly based on their indications for use. Pharmaceuticals either work or they don’t. However, Pharmaceutical products that do not work also do not qualify them as a medical device.
Health Software
Medical device software is defined as a “software intended to be used for one or more medical purposes that perform these purposes without being part of a hardware medical device.” On the other hand, Section 520(o)(1)(B) of the FD&C (Food, Drug & Cosmetics) Act, states that “any other software intended “for maintaining or encouraging a healthy lifestyle and is unrelated to the diagnosis, cure, mitigation, prevention, or treatment of a disease or condition is not a device under section 201(h) of the FD&C Act.”
Wellness products
According to CDRH, general wellness must meet the following:
Because of their generally low-risk nature, they need not be classified and regulated as a medical device under the FDA.
“What makes your products a Medical device?” can be shortened in two things:
These two are the prerequisites that you need to keep in mind as early as possible in the product development process of your potential medical device.
For more inquiries regarding audits, processes, ideation, and more don’t hesitate in contacting us.
References:
https://www.fda.gov/about-fda/fda-organization/center-devices-and-radiological-health
https://www.fda.gov/medical-devices/overview-device-regulation/regulatory-controls#gen
https://www.fda.gov/about-fda/fda-organization/center-biologics-evaluation-and-research-cber
https://www.fda.gov/about-fda/fda-organization/center-drug-evaluation-and-research-cder
https://www.fda.gov/about-fda/fda-organization/center-veterinary-medicine
https://www.fda.gov/about-fda/fda-organization/center-tobacco-products